首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the immunogenicity of GPGRAFY-epitope-based candidate vaccines, a peptide with four repetitive GPGRAFY epitopes, V3-P1 [C-(GPGRAFY)4], and a peptide (PND) of the principal neutralizing domain (V3 loop: amino acid 301-328: C-TRPNNNTRKSIRIQRGPGRAFYTIGKI) on gp120 were synthesized and covalently coupled to a carrier protein BSA. Immunization of BALB/c mice and New Zealand White Rabbits with these conjugate vaccines engendered strong antibody responses against the PND (mouse serum titer by 1:12,800-25,600; rabbit serum titer by 1:6,400-12,800). Interestingly, the V3-P1-BSA conjugates and the PND-BSA conjugates could induce high levels of GPGRAFY-epitope-specific antibodies in the mice and rabbits (mouse serum titer by 1:25,600; rabbit serum titer by 1:12,800-25,600), while a recombinant gp160 subunit vaccine induced a low level of GPGRAFY-epitope-specific antibodies (serum titer by 1:400-1,600 in mice and rabbits). To confirm the above results, GPGRAFY-epitope-specific antibodies were isolated from rabbit sera induced by V3-P1-BSA, PND-BSA conjugates and rgp160 vaccine. In fact, 23-38 and 13-22 microg epitope-specific antibodies per milliliter serum were isolated from rabbit sera induced by V3-P1-BSA and PND-BSA conjugate, respectively, while 1.34 microg epitope-specific antibodies per milliliter serum were identified in rabbit serum induced by rgp160 vaccine. In the control group, only 0.069 microg proteins per milliliter serum were found in pooled pre-immune serum (normal serum). These results from mouse and rabbit experiments indicate that epitope and peptide vaccines both induce high levels of GPGRAFY-epitope-specific antibodies in comparison with rgp160 subunit vaccine, suggesting that epitope/peptide vaccines may be a new strategy to induce protective activity.  相似文献   

2.
Liao M  Lu Y  Xiao Y  Dierich MP  Chen Y 《Peptides》2000,21(4):463-468
The monoclonal antibody 2F5 recognizing the neutralizing epitope ELDKWA on the C-domain could neutralize 90% of the investigated HIV-1 isolates. Low levels of ELDKWA-epitope-specific antibodies were observed in HIV-1-infected individuals. To induce high levels of antibodies to ELDKW-epitope, C-domain peptide (P2) was conjugated with a carrier peptide (KGGG)(7)-K (K/G). P2-K/G-conjugate induced high level of antibodies in mice by titer 1:25,600 to ELDKWA-epitope. P2-K/G-BSA-conjugate induced antibody response to ELDKWA-epitope (1:320-6400) in mice. The ELDKWA-epitope-specific antibodies of 19.8 and 34.6 microg/per milliliter serum were isolated from two rabbit antiserums (1:25,600). The levels of ELDKWA-epitope-specific antibodies induced in rabbits were greater than 1 microg/ml, a level considered to confer long-term protection. These results demonstrate the potential role of the C-domain peptide of gp41 to develop an effective ELDKWA-based epitope/peptide-vaccine against HIV-1.  相似文献   

3.
为了增强HIV-1交叉中和表位的免疫原性,本研究使用PCR克隆技术将HIV-1三个具有一定广谱中和活性的线性抗原表位ELDKWA(简称2F5)、NWFDIT(简称4E10)和GPGRAFY(简称447-52D)基因分别融合到HBV S基因的3味端,构建了分别表达这三种融合基因的天坛株重组痘苗病毒疫苗RVJ1175S-2F5、RVJ1175S-4E10和RVJ1175S-447-52D,使用这三种重组痘苗病毒感染的细胞培养上清液经分离纯化制备了三种相应的蛋白亚单位疫苗PS-2F5、PS-4E10和PS-447-52D,对重组痘苗病毒和亚单位疫苗中三种融合抗原的生物学及免疫学特性进行了比较研究.PCR和测序结果表明,三种融合基因序列正确重组到痘苗病毒TK区,HBsAg的ELISA检测表明三种融合蛋白有效表达并分泌到细胞培养上清液中,SDS-PAGE凝胶电泳显示三种纯化后的融合蛋白均含分子量为23kD和27kD两种典型HBsAg条带,Western blot证明这两个条带均能与HBsAg抗体反应,并分别能与三种表位相应的HIV-1单抗2F5、4E10和447-52D反应.小鼠免疫结果显示,三种重组痘苗病毒疫苗和三种蛋白亚单位疫苗均能诱发较高水平的HBsAg抗体和相应HIV-1交叉中和表位抗体,蛋白亚单位疫苗诱生的这两类抗体均明显高于对应的重组痘苗病毒疫苗.这些结果为进一步研究三种表位抗体的中和活性和通过不同类型疫苗联合免疫进一步增强其免疫效果研究奠定了基础.  相似文献   

4.
Epitope-based vaccination is a promising means to achieve protective immunity and to avoid immunopathology in Japanese encephalitis virus (JEV) infection. Several B-cell and T-cell epitopes have been mapped to the E protein of JEV, and they are responsible for the elicitation of the neutralizing antibodies and CTLs that impart protective immunity to the host. In the present study, we optimized a proposed multi-epitope peptide (MEP) using an epitope-based vaccine strategy, which combined six B-cell epitopes (amino acid residues 75-92, 149-163, 258-285, 356-362, 373-399 and 397-403) and two T-cell epitopes (amino acid residues 60-68 and 436-445) from the E protein of JEV. This recombinant protein was expressed in Escherichia coli, named rMEP, and its protective efficacy against JEV infection was assessed in BALB/c mice. The results showed that rMEP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. It provided complete protection against lethal challenge with JEV in mice. Our findings indicate that the multi-epitope vaccine rMEP may be an attractive candidate vaccine for the prevention of JEV infection.  相似文献   

5.
Preservation of the conformation of recombinant gp120 in an adjuvant, enabling it to elicit conformation-dependent, epitope-specific, broadly neutralizing antibodies, may be critical for the development of any gp120-based human immunodeficiency virus type 1 (HIV-1) vaccine. It was hypothesized that recombinant gp120 complexed with recombinant CD4 could stabilize the conformation-dependent neutralizing epitopes and effectively deliver them to the immune system. Therefore, a soluble CD4-gp120 complex in Syntex adjuvant formulation was tested with mice for its ability to induce neutralizing anti-gp120 antibody responses. Seventeen monoclonal antibodies (MAbs) were generated and characterized. Immunochemical studies, neutralization assays, and mapping studies with gp120 mutants indicated that the 17 MAbs fell into three groups. Four of them were directed to what is probably a conformational epitope involving the C1 domain and did not possess virus-neutralizing activities. Another four MAbs bound to V3 peptide 302-321 and exhibited cross-reactive gp120 binding and relatively weak virus-neutralizing activities. These MAbs were very sensitive to amino acid substitutions, not only in the V3 regions but also in the base of the V1/V2 loop, implying a conformational constraint on the epitope. The last group of nine MAbs recognized conformation-dependent epitopes near the CD4 binding site of gp120 and inhibited the gp120-soluble CD4 interaction. Four of these nine MAbs showed broadly neutralizing activities against multiple laboratory-adapted strains of HIV-1, three of them neutralized only HIVIIIB, and the two lower-affinity MAbs did not neutralize any strain tested. Collectively, the results from this study indicate that immunization with the CD4-gp120 complex can elicit antibodies to conformationally sensitive gp120 epitopes, with some of the antibodies having broadly neutralizing activities. We suggest that immunization with CD4-gp120 complexes may be worth evaluating further for the development of an AIDS vaccine.  相似文献   

6.
Hepatitis C(HCV) genome is highly variable,particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene.The variability of HCV genome has been a major obstacle for de-veloping HCV vaccines.Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes,we synthesized an minigene of HCV-derived multi-epitope peptide an-tigen(CMEP) ,which contains 9 B-cell HVR1 mimotopes in E2,2 conserved CTL epitopes in C,1 conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3.This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP.The immunogenic properties of CEMP were characterized by HCV infected patients' sera,and found that the reactivity frequency reached 75%.The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%.Meanwhile,we constructed an HCV DNA vaccine candidate,plasmid pVAX1.0-st-CMEP carrying the recombinant gene(st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene.Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody,which was of the same cross reactivity as the fusion protein GST-CMEP.Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes,and would be of the value as a candidate for the development of HCV vaccines.  相似文献   

7.
Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients’ sera, and found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes, and would be of the value as a candidate for the development of HCV vaccines.  相似文献   

8.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.  相似文献   

9.
The ability to induce anti-HIV-1 antibodies that can neutralize a broad spectrum of viral isolates from different subtypes seems to be a key requirement for development of an effective HIV-1 vaccine. The epitopes recognized by the most potent broadly neutralizing antibodies that have been characterized are largely discontinuous. Mimetics of such conformational epitopes could be potentially used as components of a synthetic immunogen that can elicit neutralizing antibodies. Here we used phage display technology to identify peptide motifs that mimic the epitope recognized by monoclonal antibody VRC01, which is able to neutralize up to 91% of circulating primary isolates. Three rounds of biopanning were performed against 2 different phage peptide libraries for this purpose. The binding specificity of selected phage clones to monoclonal antibody VRC01 was estimated using dot blot analysis. The putative peptide mimics exposed on the surface of selected phages were analyzed for conformational and linear homology to the surface of HIV-1 gp120 fragment using computational analysis. Corresponding peptides were synthesized and checked for their ability to interfere with neutralization activity of VRC01 in a competitive inhibition assay. One of the most common peptides selected from 12-mer phage library was found to partially mimic a CD4-binding loop fragment, whereas none of the circular C7C-mer peptides was able to mimic any HIV-1 domains. However, peptides identified from both the 12-mer and C7C-mer peptide libraries showed rescue of HIV-1 infectivity in the competitive inhibition assay. The identification of epitope mimics may lead to novel immunogens capable of inducing broadly reactive neutralizing antibodies.  相似文献   

10.
Recent studies have demonstrated that the membrane-proximal external region(MPER)of human immunodeficiency virus 1(HIV-1)glycoprotein 41 contains a series of epitopes for human monoclonal antibodies,including 2F5,Z13e1,4E10,and10E8,which were isolated from HIV-1-infected individuals and show broad neutralizing activities.This suggests that MPER is a good target for the development of effective HIV-1 vaccines.However,many studies have shown that it is difficult to induce antibodies with similar broad neutralizing activities using MPER-based peptide antigens.Here,we report that 10E8-like neutralizing antibodies with effective anti-HIV-1 activity were readily induced using a precisely designed conformational immunogenic peptide containing the 10E8-specific epitope.This immunogenic peptide(designated T10HE)contains a 15-mer MPER-derived 10E8-specific epitope fused to T-helper-cell epitopes from tetanus toxin(tt),which showed a significantly stabilized-helix structure after a series of modifications,including substitution with an(S)--(2-pentenyl)alanine containing an olefin-bearing tether and ruthenium-catalyzed olefin metathesis,compared with the unmodified T10E peptide.The stabilized-helix structure of T10HE did not affect its capacity to bind the 10E8 antibody,as evaluated with an enzyme linked immunosorbent assay(ELISA)and surface plasmon resonance binding assay(SPR assay).The efficacies of the T10HE and T10E epitope vaccines were evaluated after a standard vaccination procedure in which the experimental mice were primed with either the T10HE or T10E immunogen and boosted with HIV-1 JRFL pseudoviruses.Higher titers of 10E8-like antibodies were induced by T10HE than that by T10E.More importantly,the antibodies induced by T10HE showed enhanced antiviral potency against HIV-1 strains with both X4 and R5 tropism and a greater degree of broad neutralizing activity than the antibodies induced by T10E.These results indicate that a 10E8-epitope-based structure-specific peptide immunogen can elicit neutralizing antibodies when used as a vaccine prime.  相似文献   

11.
Vaccination against human immunodeficiency virus type 1 (HIV-1) requires an immunogen which will elicit a protective immunity against viruses that show a high degree of genetic polymorphism. Therefore, the identification of neutralizing epitopes which are shared by many strains would be useful. In previous studies, we established a human monoclonal antibody (2F5) that neutralizes a variety of laboratory strains and clinical isolates of HIV-1. In the present report, we define the amino acid sequence Glu-Leu-Asp-Lys-Trp-Ala (ELDKWA) on the ectodomain of gp41 as the epitope recognized by this antibody. The sequence was found to be conserved in 72% of otherwise highly variable HIV-1 isolates. Escape mutants were not detected in cells infected with HIV-1 isolates MN and RF in the presence of antibody 2F5. Since sequence variability of neutralizing epitopes is considered to be a major obstacle to HIV-1 vaccine development, the conserved B-cell epitope described here is a promising candidate for inclusion in a vaccine against AIDS.  相似文献   

12.
A small proportion of HIV-infected individuals generate a neutralizing antibody (NAb) response of exceptional magnitude and breadth. A detailed analysis of the critical epitopes targeted by broadly neutralizing antibodies should help to define optimal targets for vaccine design. HIV-1-infected subjects with potent cross-reactive serum neutralizing antibodies were identified by assaying sera from 308 subjects against a multiclade panel of 12 "tier 2" viruses (4 each of subtypes A, B, and C). Various neutralizing epitope specificities were determined for the top 9 neutralizers, including clade A-, clade B-, clade C-, and clade A/C-infected donors, by using a comprehensive set of assays. In some subjects, neutralization breadth was mediated by two or more antibody specificities. Although antibodies to the gp41 membrane-proximal external region (MPER) were identified in some subjects, the subjects with the greatest neutralization breadth targeted gp120 epitopes, including the CD4 binding site, a glycan-containing quaternary epitope formed by the V2 and V3 loops, or an outer domain epitope containing a glycan at residue N332. The broadly reactive HIV-1 neutralization observed in some subjects is mediated by antibodies targeting several conserved regions on the HIV-1 envelope glycoprotein.  相似文献   

13.
Epitope vaccine is a promising option for prophylactic and therapeutic vaccination against Helicobacter pylori infection. Urease is an essential virulence factor and colonization factor for H. pylori. In this study, we constructed a multi-epitope vaccine named CTB-UE with mucosal adjuvant cholera toxin B subunit (CTB) and tandem copies of Th and B cell epitopes from H. pylori urease A and B subunits. The immunogenicity, specificity, ability to induce neutralizing antibodies against H. pylori urease, and prophylactic and therapeutic efficacy of the CTB-UE vaccine were evaluated in BALB/c mice model after purification. The experimental results indicated that CTB-UE could induce comparatively high levels of specific antibodies against native H. pylori urease, UreA, UreB, or the selected B cell epitopes UreA183–203 and UreB327–334 involved with the active site of urease and showed an effectively inhibitory effect on the enzymatic activity of urease. Besides, oral prophylactic or therapeutic immunization with CTB-UE significantly decreased H. pylori colonization compared with oral immunization with rUreB or PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG, IgA, and mucosal sIgA antibody responses. This CTB-UE vaccine may be a promising vaccine candidate for the control of H. pylori infection.  相似文献   

14.
The high mutation rate of HIV-1 (human immunodeficiency virus-1) is a major obstacle to developing an effective vaccine. The mutation of ELDKWA-(aa669-674) to ELDEWA-epitope on HIV-1 gp41 caused the immune escape from neutralization by potent anti-HIV-1 human monoclonal antibody (mAb) 2F5. In this study, we suggested and evaluated a multi-epitope vaccine as a new strategy to develop HIV-1 vaccines. A glutathione S-transferase (GST) fusion protein (GST-K8E8) containing 8 copies of ELDKWA-and mutated ELDEWA-epitopes was constructed and used to immunize mice or rabbits. Analysis of the antisera (rAS3) induced by GST-K8E8 suggested that multi-epitope vaccine immunogen could raise antibodies in mice and rabbits against either the original ELDKWA-epitope or the mutated ELDEWA-epitope that resulted in immune escape. Briefly, ELDKWA-epitope-specific antibodies, directly purified from rAS3 by ELDKWA-epitope-peptide affinity chromatography, recognized either original gp41 protein (ELDKWA, rgp41K) or mutated gp41 (ELDEWA, rgp41E) in immunoblotting assay; in contrast, the existing ELDKWA-epitope antibodies recognized only rgp41K but not rgp41E, which were purified by ELDKWA-epitope-peptide affinity chromatography from rAS3 that were firstly completely pre-absorbed by ELDEWA-epitope-peptide affinity beads. And the same results were also observed when detecting the ELDEWA-epitope-specific antibodies in rAS3 by a means similar to the above. All the data presented here demonstrated that a high density multi-epitope vaccine could be an interesting strategy against HIV-1 mutation.  相似文献   

15.
A cluster of promising epitopes for the development of human immunodeficiency virus (HIV) vaccines is located in the membrane-proximal external region (MPER) of the gp41 subunit of the HIV envelope spike structure. The crystal structure of the peptide corresponding to the so-called ELDKWA epitope (HIV-1 HxB2 gp41 residues 662-668), in complex with the corresponding broadly neutralizing human monoclonal antibody 2F5, provides a target for structure-based vaccine design strategies aimed at finding macromolecular carriers that are able to present this MPER-derived epitope with optimal antigenic activity. To this end, a series of replica exchange molecular dynamics computer simulations was conducted to characterize the distributions of conformations of ELDKWA-based epitopes inserted into a rhinovirus carrier and to identify those with the highest fraction of conformations that are able to bind 2F5. The length, hydrophobic character, and precise site of insertion were found to be critical for achieving structural similarity to the target crystal structure. A construct with a high degree of complementarity to the corresponding determinant region of 2F5 was obtained. This construct was employed to build a high-resolution structural model of the complex between the 2F5 antibody and the chimeric human rhinovirus type 14:HIV-1 ELDKWA virus particle. Additional simulations, which were conducted to study the conformational propensities of the ELDKWA region in solution, confirm the hypothesis that the ELDKWA region of gp41 is highly flexible and capable of assuming helical conformations (as in the postfusion helical bundle structure) and β-turn conformations (as in the complex with the 2F5 antibody). These results also suggest that the ELDKWA epitope can be involved in intramolecular—and likely intermolecular—hydrophobic interactions. This tendency offers an explanation for the observation that mutations decreasing the hydrophobic character of the MPER in many cases result in conformational changes that increase the affinity of this region for the 2F5 antibody.  相似文献   

16.
Mader A  Kunert R 《PloS one》2012,7(6):e39063
The HIV-1 envelope protein harbors several conserved epitopes that are recognized by broadly neutralizing antibodies. One of these neutralizing sites, the MPER region of gp41, is targeted by one of the most potent and broadly neutralizing monoclonal antibody, 2F5. Different vaccination strategies and a lot of efforts have been undertaken to induce MPER neutralizing antibodies but little success has been achieved so far. We tried to consider the alternative anti-idiotypic vaccination approach for induction of 2F5-like antibodies. The previously developed and characterized anti-idiotypic antibody Ab2/3H6 was expressed as antibody fragment fusion protein with C-terminally attached immune-modulators and used for immunization of rabbits to induce antibodies specific for HIV-1. Only those rabbits immunized with immunogens fused with the immune-modulators developed HIV-1 specific antibodies. Anti-anti-idiotypic antibodies were affinity purified using a two-step affinity purification protocol which revealed that only little amount of the total rabbit IgG fraction contained HIV-1 specific antibodies. The characterization of the induced anti-anti-idiotypic antibodies showed specificity for the linear epitope of 2F5 GGGELDKWASL and the HIV-1 envelope protein gp140. Despite specificity for the linear epitope and the truncated HIV-1 envelope protein these antibodies were not able to exhibit virus neutralization activities. These results suggest that Ab2/3H6 alone might not be suitable as a vaccine.  相似文献   

17.
To date only a few neutralizing antibodies against HIV-1 exist. Since these neutralizing antibodies are only rarely found in sera of HIV-1 infected individuals an active vaccine is required. We recently developed murine anti-idiotypic antibody Ab2/3H6 against monoclonal antibody (mAb) 2F5, which is one of the most prominent neutralizing antibodies. Anti-idiotypic antibody Ab2/3H6 has been partially humanized and expressed as whole immunoglobulin G in Chinese hamster ovary cells in order to minimize the human anti-mouse antibody response. Here we describe the expression, purification, and immunohistochemical characterization of the chimeric Ab2/3H6 Fab fragment, which was finally used beside the whole IgG1 as an antigen for immunization of guinea pigs. The crude sera were screened for specific antibodies against the epitope of mAb 2F5 ELDKWA as well as for reactivity against HIV-1 gp41.  相似文献   

18.
Antibodies against conserved epitopes on HIV-1 envelope glycoproteins (Env), such as the gp120 CD4-binding site (CD4bs), could contribute to protection against HIV-1. Env-based immunogens inducing such a response could be a major component of future anti-HIV-1 strategies. In this proof-of-concept study we describe the generation of two anti-idiotype (AI) murine antibodies mimicking the CD4bs epitope. Sera were collected from long-term non-progressor patients to obtain CD4bs-directed IgG, through sequential purification steps. The purified IgG were then used as Fab fragments to immunize mice for hybridoma generation. Two hybridomas (P1 and P2), reacting only against the CD4bs-directed IgG, were identified and characterized. The P1 and P2 antibodies were shown to recognize the idiotype of the broadly neutralizing anti-CD4bs human mAb b12. Both P1 and P2 Fabs were able to induce a strong anti-gp120 response in rabbits. Moreover, the rabbits' sera were shown to neutralize two sensitive tier 1 strains of HIV-1 in an Env-pseudotype neutralization assay. In particular, 3/5 rabbits in the P1 group and 1/5 in the P2 group showed greater than 80% neutralizing activity against the HXB2 pseudovirus. Two rabbits also neutralized the pseudovirus HIV-MN. Overall, these data describe the first anti-idiotypic vaccine approach performed to generate antibodies to the CD4bs of the HIV-1 gp120. Although future studies will be necessary to improve strength and breadth of the elicited neutralizing response, this proof-of-concept study documents that immunogens designed on the idiotype of broadly neutralizing Abs are feasible and could help in the design of future anti-HIV strategies.  相似文献   

19.
The high-yield expression of a neutralizing epitope from human immunodeficiency virus type 1 (HIV-1) on the surface of a plant virus and its immunogenicity are presented. The highly conserved ELDKWA epitope from glycoprotein (gp) 41 was expressed as an N-terminal translational fusion with the potato virus X (PVX) coat protein. The resulting chimeric virus particles (CVPs), purified and used to immunize mice intraperitoneally or intranasally, were able to elicit high levels of HIV-1-specific immunoglobulin G (IgG) and IgA antibodies. Furthermore, the human immune response to CVPs was studied with severe combined immunodeficient mice reconstituted with human peripheral blood lymphocytes (hu-PBL-SCID). hu-PBL-SCID mice immunized with CVP-pulsed autologous dendritic cells were able to mount a specific human primary antibody response against the gp41-derived epitope. Notably, sera from both normal and hu-PBL-SCID mice showed an anti-HIV-1-neutralizing activity. Thus, PVX-based CVPs carrying neutralizing epitopes can offer novel perspectives for the development of effective vaccines against HIV and, more generally, for the design of new vaccination strategies in humans.  相似文献   

20.
Inactivation of viral particles is the basis for several vaccines currently in use. Initial attempts to use simian immunodeficiency virus to model a killed human immunodeficiency virus type 1 (HIV-1) vaccine were unsuccessful, and limited subsequent effort has been directed toward a systematic study of the requirements for a protective killed HIV-1 vaccine. Recent insights into HIV-1 virion and glycoprotein structure and neutralization epitopes led us to revisit whether inactivated HIV-1 particles could serve as the basis for an HIV-1 vaccine. Our results indicate that relatively simple processes involving thermal and chemical inactivation can inactivate HIV-1 by at least 7 logs. For some HIV-1 strains, significant amounts of envelope glycoproteins are retained in high-molecular-weight fractions. Importantly, we demonstrate retention of each of three conformation-dependent neutralization epitopes. Moreover, reactivity of monoclonal antibodies directed toward these epitopes is increased following treatment, suggesting greater exposure of the epitopes. In contrast, treatment of free envelope under the same conditions leads only to decreased antibody recognition. These inactivated virions can also be presented by human dendritic cells to direct a cell-mediated immune response in vitro. These data indicate that a systematic study of HIV-1 inactivation, gp120 retention, and epitope reactivity with conformation-specific neutralizing antibodies can provide important insights for the development of an effective killed HIV-1 vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号