首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
黄河上游不同干湿气候区植被对气候变化的响应   总被引:7,自引:0,他引:7       下载免费PDF全文
 研究气候变化背景下植被变化趋势及其与水热因子的关系, 对于黄河源区的生态恢复和生态建设具有重要意义。采用基于FAO Penman-Monteith的降水蒸散比来描述区域的干湿状况, 划分了黄河上游地区的干湿气候区。在此基础上, 利用AVHRR归一化植被指数(NDVI)和GLOPEM净初级生产力(NPP)数据集和同期的气候资料, 分析了黄河上游植被覆盖、植被生产力和气候变化的趋势, 探讨了不同干湿气候区影响植被变化的主要气候因子。结果表明, 研究区域东南部为半湿润气候区, 其余为半干旱气候区, 干湿气候分界线与450 mm降水等值线较接近; 1981–2006年区域气候趋于干暖化, 尤其是气温的升高趋势明显; 半湿润地区NDVI和NPP显著增加, 半干旱地区略有增加; 半湿润地区的NDVI多与气温显著正相关, 与降水量的相关性较弱, 气温是植被生长的主要气候制约因素; 半干旱地区的NDVI则与降水量的正相关性更强, 对降水量的变化较为敏感。NPP对气候变化的响应模式与NDVI相似。植被对气候变化的响应部分依赖于研究区域所具备的水热条件, 干湿气候划分有助于更好地解释植被对气候变化响应的空间差异。  相似文献   

2.
张世喆  朱秀芳  刘婷婷  徐昆  郭锐 《生态学报》2022,42(8):3429-3440
干旱变化具有明显的空间分异,不同植被类型对干旱的响应亦有差别。开展气候变化下不同植被覆盖类型对干旱响应的差异分析,厘清温升干旱化进程对植被的影响,对了解植被发展动态及预测未来格局有着非常重要的意义。基于1982—2017年的总初级生产力(GPP)数据和同时期东安格利亚大学气候研究中心(CRU)时间序列(TS)气候数据,分析了中国8个植被区GPP和干旱的变化趋势,通过对比标准化降水指数(SPI)和标准化降水蒸散指数(SPEI)的趋势差异识别了典型的温升干旱化区域,在此基础上研究气温上升如何影响GPP对干旱的响应,进一步讨论了不同植被类型对干旱的敏感性差异。结果表明:(1) 36年来8个植被区除青藏高原高寒植被区呈湿润化,其他植被区均呈现变干趋势;(2)气温上升大面积加剧了温带荒漠区和温带草原区的变干趋势;(3)亚热带常绿阔叶林区和热带季风雨林、雨林区的GPP受温度和干旱影响相当,青藏高原高寒植被区和针叶、落叶林混交林区的GPP受温度主导,其他植被区GPP均受干旱主导。  相似文献   

3.
泾河流域土地开发历史悠久, 是黄土高原水土流失的典型区域。研究气候变化和人类活动影响下泾河流域的植被覆盖变化及其原因, 对黄土高原的植被恢复、水土保持和景观管理等都具有重要意义。该研究应用GIMMS归一化植被指数NDVI、土地覆盖分类数据和气候数据, 采用趋势分析和相关分析方法, 研究了泾河流域1982-2005年植被覆盖变化趋势及其驱动因素。研究表明: 泾河流域24年间79.64%的区域NDVI无显著变化趋势, NDVI趋势显著增加的区域占16.33%, 主要集中在流域中部和南部, NDVI趋势显著减小的区域占4.03%, 主要集中在流域北部。流域所有气象站点的降水量均无显著变化趋势, 气温均呈显著升高趋势。分析发现气候变化不能很好地解释NDVI趋势的空间分异, 人为因素更为重要。从土地利用分析结果来看, NDVI不同趋势下各土地利用类型比例无明显变化, 但NDVI显著增加区以耕地为主, 显著减小区以草地为主, 由此推断NDVI的显著增加趋势主要由耕地NDVI增加引起, 显著减小趋势可能与林地减少和草地退化有关。通过分析不同分区的土地利用数据和社会经济资料, 着重探讨了造成植被覆盖显著变化趋势的人为因素。  相似文献   

4.
新疆植被物候时空变化特征   总被引:8,自引:5,他引:3  
基于MODIS-NDVI数据,提取新疆2001—2016年典型植被物候期,分析新疆不同生态分区的山地-绿洲系统植被物候期的时空演变趋势和空间分异特征,并结合同期气象数据,探讨植被物候与气候变化的响应关系。结论为:(1)新疆植被物候具有明显的纬向分布和垂直地带性分布特征,海拔在物候的地域分异中扮演着重要作用。新疆植被生长季开始时间(Start of season,SOS)集中于3月中旬至5月上旬,生长季结束时间(End of season,EOS)集中于10月中旬至12月下旬。(2)与全球大背景下典型植被物候特征变化趋势相反,新疆植被SOS呈推迟趋势,推迟幅度为1.9d/10a;EOS呈提前趋势,提前幅度为3.66d/10a;生长季长度(Length of season,LEN)呈缩短趋势,缩短幅度为5.6d/10a。除东疆地区外,全疆及不同分区均呈现出绿洲及平原SOS较早,山地区域较迟;全疆及不同分区均呈现出山地EOS结束较早,绿洲结束较迟;除东疆地区外,全疆及不同分区的LEN均为绿洲及平原区域山地,同样显示出垂直地带性分布的特征。(3)通过冗余分析(Redundancy analysis,RDA)解释了物候特征与气象因子关系的绝大部分信息,生长季开始时间受春季气温、前一年冬季降水量和日照时数的显著影响。夏季和秋季降水量是新疆植被生长季结束时间的重要影响因素,在总体上受气温和日照时数的影响较小。  相似文献   

5.
中国北方气候干湿变化及干旱演变特征   总被引:4,自引:0,他引:4  
利用中国北方15个省(区、市)320个气象站1960—2014年逐月降水量资料,运用标准化降水指数(SPI)、标准差和相关分析等方法,基于不同时间尺度,对近55年来中国北方及不同干湿区气候干湿时空变化特征进行分析,并从干旱站次比、干旱强度等方面分析了年际干旱的时空变化特征。结果表明:(1)1960—2014年中国北方地区整体呈变干趋势,年际干旱站次比和干旱强度在同步波动中均呈下降趋势。(2)1960—2014年北方地区春季和冬季呈湿润化趋势,冬季湿润化趋势最明显,夏季和秋季呈干旱化趋势,夏季干旱化趋势最显著,夏季降水对年干湿状况的变化起决定性作用。(3)湿润区和半湿润区有干旱化趋势,而干旱区和半干旱区均呈湿润化趋势发展;湿润区和半湿润区年际干旱站次比、干旱强度呈上升趋势,而干旱区和半干旱区则相反。(4)中国北方东部季风区的湿润区和半湿润区以及处于季风区和非季风区分界线两侧的半湿润区和半干旱区气候干湿变化均呈显著同步波动变化趋势,而中国北方东部季风区的湿润区和半湿润区与中国北方西部非季风区的干旱区气候干湿变化呈显著反向波动变化趋势,夏季具有同样的规律,而冬季和春季四大干湿区干湿变化具有较好的同步一致性。  相似文献   

6.
青藏高原是全球气候变化的敏感区,特殊的自然环境孕育了极端脆弱的植被及其生态系统,已成为研究植被对气候变化响应的一个理想区域。植被易受气候变化的影响且响应可能因季节和植被类型而异。该研究将标准化降水蒸散指数(SPEI)和MODIS归一化植被指数(NDVI)分别作为干湿度和植被绿度指标,采用Sen’s斜率估计、BFAST模型和相关分析,分析了2000–2018年青藏高原植被绿度变化的时空格局特征,并探讨了植被绿度对干湿变化的响应。结果表明:2000–2018年青藏高原植被绿度呈上升趋势,但变化速率空间差异显著。大部分高原地区植被绿度于2012–2015年间存在突变,突变后普遍呈上升趋势,以藏北地区最为突出。青藏高原植被生长季NDVI与不同时间尺度SPEI整体呈正相关关系,且在生长季的中后期相关性逐渐增强。青藏高原植被对SPEI的响应表现出一定的年内周期性,草本植被(草甸和草原)区尤为显著。相对于森林和灌丛植被,草本植被对SPEI响应更为敏感,且在生长季的不同阶段对不同时间尺度的SPEI的响应存在明显差异。  相似文献   

7.
为揭示实施退耕还林(草)政策20年后黄土高原植被盖度的最新演变趋势及区域差异,定量分析气候和人类活动对该区植被盖度变化的贡献率及空间分布。该研究以光合植被(PV)盖度为植被生长状况指标,基于2001–2020年PV数据及同期气象数据,采用Mann-Kendall检验、Sen分析和残差分析等方法,分析了黄土高原2001–2020年植被覆盖的时空演变特征及其驱动要素。主要结果:20年中黄土高原植被盖度呈显著增加趋势,增速为每年0.8%。全区植被盖度呈增加趋势的区域面积比例为90%,呈显著增加的区域面积占比为71%;对全区植被盖度增加的贡献,主要是黄土丘陵区(约2/5),其次为风沙丘陵区(约1/4)和石质山区(约1/5);不同地貌分区内,黄土丘陵区中陕西榆林和延安两市区境内植被盖度增加迅速,风沙丘陵区中内蒙古鄂尔多斯市植被盖度变化最快;研究时段内人类活动和气候变化对黄土高原植被增加的贡献率分别为76%和24%;人类活动对植被盖度贡献较大区域主要分布在陕西延安以北、山西太原以南、宁夏同心以南和甘肃平凉和庆阳等丘陵、台塬和风沙丘陵等政府生态工程实施较好的地区。  相似文献   

8.
准噶尔盆地植被与土壤盐渍化关联性变化趋势分析   总被引:1,自引:0,他引:1  
杜秉晨曦  程勇翔  吴玲 《生态学报》2021,41(23):9364-9376
准噶尔盆地作为北疆地区主要的气候单元其环境变化会影响北疆地区整体的的生态环境变化。植被作为衡量区域生态环境的重要指标直接反映了准噶尔盆地的生态状况,近年来受到全球气候变化的影响准噶尔盆地地区气候格局发生改变,盆地相比于往年降水和气温明显升高,这种改变影响了盆地的植被变化同时也会在部分地区诱发土壤盐渍化灾害。土壤盐渍化是我国西北地区常见的导致植被退化的因素,其生成原因与地形和气候因素有关。为了探究准噶尔盆地植被变化与土壤盐渍化的关联性,基于2002-2019年生长季MOD09A1遥感影像数据,利用最大值合成法、Mann-Kendall趋势分析,Hurst趋势分析法、相关性分析等方法对准噶尔盆地植被和土壤盐渍化变化趋势以及两者的关联性进行了分析。结果表明,受区域降水和气温升高的影响,近20年来准噶尔盆地生长季植被整体呈增加趋势,各季节增加区域面积占比为63.50%-90.93%,平均为77.98%。土壤盐渍化呈减少趋势,各季减少区域面积占比为46.50%-86.78%,平均为70.68%。在地形低洼、排水不畅的区域土壤盐渍化程度加重,植被因盐分胁迫导致衰退,植被减少及巨大的蒸发降水比使得该地区土壤进一步变干,湿度降低。关联性分析结果表明各季植被与土壤盐渍化的变化中呈显著负相关的区域面积占比为37.36%-57.83%,平均为51.75%。Hurst趋势预测结果表明,当前植被和土壤盐渍化两者呈显著性变化的区域未来预测与当前变化方向相同,两者呈一般性变化的区域未来预测与当前相反。研究有助于在全球气候变化背景下了解准噶尔盆地近年来生态环境变化,结果为区域生态环境的可持续发展提供参考。  相似文献   

9.
不同植被类型对外界干扰和环境变化的敏感性不同。为厘清中国不同类型植被的动态变化特征及其对外界环境变化的响应,综合利用趋势分析、残差分析和情景模拟方法,在明确2000-2015年间我国不同植被类型归一化植被指数(NDVI)时空变化基础上,对气候变化和人类活动两大驱动要素在不同植被类型NDVI变化中的相对贡献进行了定量评估和归因。研究结果表明:(1)2000-2015年,我国植被NDVI整体呈增加趋势,且其空间占比高达84.1%。其中,森林植被的改善状况最佳,显著增加的面积占到了森林总面积的82.4%;而荒漠植被的改善状况相对较差,仅有22.3%的区域呈显著增加趋势。(2)人类活动在我国植被变化中占主导地位。植被改善区和植被退化区人类活动的相对贡献分别为76.4%和60.0%,且人类活动对植被的影响更多与管理方式而非土地利用类型转变有关。(3)不同类型植被对气候变化和人类活动的响应差异显著。对于植被改善区,除沼泽外,人类活动对各类型植被NDVI变化的贡献率均在70%以上,尤其是对农作物的贡献率最高,达到80.7%;对于植被退化区,人类活动影响较大的植被类型为沼泽和农作物,表明2000-2015年间我国沼泽受到了更强烈人类活动的负面影响。研究有助于增强对不同植被类型对全球变化响应机制的理解,并为促进生态建设和植被恢复工作的有效实施提供科学参考。  相似文献   

10.
中国西南喀斯特地区植被变化时空特征及其成因   总被引:4,自引:0,他引:4  
2000年以来,国家在中国西南喀斯特地区开展一系列生态治理工程,该地区退化生态系统得到一定程度的恢复,而2008年开展石漠化综合治理工程以来该地区的植被覆盖和生产力如何变化尚不清楚。本研究利用遥感增强型植被指数(EVI)和总初级生产力(GPP)数据,研究2000—2015年西南喀斯特地区植被EVI年均值和GPP年总量的时空变化特征,重点探讨2008年以来石漠化综合治理工程、气候变化等因素对植被覆盖及生长的影响,进而评估石漠化综合治理工程的成效。结果表明,2000—2015年西南喀斯特地区植被EVI总体显著增加,其中2008—2015年植被EVI均值和变化率分别比2000—2007年高6.9%和85.7%,EVI显著增加的区域占西南喀斯特地区的13.4%;该区域GPP年总量亦呈显著增加趋势(20.58 g C m-2a-1)。2008—2015年气温和降水对植被EVI变化趋势的贡献仅占28.3%,退耕还林还草等生态恢复措施、大气CO2浓度、大气氮沉降的增加可能是该区域植被覆盖显著增加的主要贡献因子。在100个首批石漠化综合治理试点县中,大部分试点县植被EVI的变化趋势受非气候因子的影响,其中治理面积大的县受非气候因子的影响显著高于治理面积小的县,表明石漠化综合治理工程的实施有效地促进了试点县植被覆盖的增加。  相似文献   

11.
Increasing aridity is one major consequence of ongoing global climate change and is expected to cause widespread changes in key ecosystem attributes, functions, and dynamics. This is especially the case in naturally vulnerable ecosystems, such as drylands. While we have an overall understanding of past aridity trends, the linkage between temporal dynamics in aridity and dryland ecosystem responses remain largely unknown. Here, we examined recent trends in aridity over the past two decades within global drylands as a basis for exploring the response of ecosystem state variables associated with land and atmosphere processes (e.g., vegetation cover, vegetation functioning, soil water availability, land cover, burned area, and vapor-pressure deficit) to these trends. We identified five clusters, characterizing spatiotemporal patterns in aridity between 2000 and 2020. Overall, we observe that 44.5% of all areas are getting dryer, 31.6% getting wetter, and 23.8% have no trends in aridity. Our results show strongest correlations between trends in ecosystem state variables and aridity in clusters with increasing aridity, which matches expectations of systemic acclimatization of the ecosystem to a reduction in water availability/water stress. Trends in vegetation (expressed by leaf area index [LAI]) are affected differently by potential driving factors (e.g., environmental, and climatic factors, soil properties, and population density) in areas experiencing water-related stress as compared to areas not exposed to water-related stress. Canopy height for example, has a positive impact on trends in LAI when the system is stressed but does not impact the trends in non-stressed systems. Conversely, opposite relationships were found for soil parameters such as root-zone water storage capacity and organic carbon density. How potential driving factors impact dryland vegetation differently depending on water-related stress (or no stress) is important, for example within management strategies to maintain and restore dryland vegetation.  相似文献   

12.
Floodplain and riparian ecosystems have cooler, wetter microclimatic conditions, higher water availability and greater vegetation biomass than adjacent terrestrial zones. Given these conditions, we investigated whether floodplain ecosystems allow terrestrial bird species to extend into more arid regions than they otherwise would be expected to occupy. We evaluated associations between aridity and the occurrence of 130 species using bird survey data from 2998 sites along the two major river corridors in the Murray–Darling Basin, Australia. We compared the effects of aridity on species occurrence in non-floodplain and floodplain ecosystems to test whether floodplains moderate the effect of aridity. Aridity had a negative effect on the occurrence of 58 species (45%) in non-floodplain ecosystems, especially species dependent on forest and woodland habitats. Of these 58 species, the negative effects of aridity were moderated in floodplain ecosystems for 22 (38%) species: 12 showed no association with aridity in floodplain ecosystems and the adverse effects of aridity on species occurrence were less pronounced in floodplain ecosystems compared to non-floodplain ecosystems for ten species. Greater vegetation greenness indicated that floodplain vegetation was more productive than vegetation in non-floodplain ecosystems. Floodplain ecosystems allow many terrestrial species to occur in more arid regions than they otherwise would be expected to occupy. This may be due to higher vegetation productivity, cooler microclimates or connectivity of floodplain vegetation. Although floodplain and riparian ecosystems will become increasingly important for terrestrial species persistence as climate change increases drying in many parts of the world, many are also likely to be highly affected by reduced water availability.  相似文献   

13.
新疆焉耆盆地人类活动与气候变化的效应机制   总被引:2,自引:0,他引:2  
通过对新疆焉耆盆地及其周边近40a(1973—2014)的气候变化趋势检测、LUCC和生物量估算,探讨气候变化和人类活动的生态效应机制,研究区域陆地生态系统演变及其归因。分析结果表明:(1)焉耆盆地山区和平原区降水变化都有明显的突变点,并呈现增加趋势,蒸发量在山区减少,在平原区波动性减少趋势;(2)LUCC分析表明,山区裸地面积减少5.40%,冰川面积减少3.36%,高地植被面积增加8.76%;同时平原区天然绿洲面积增加1.96%,沙漠面积减少1.62%,水域面积减少1.30%,人工绿洲面积增加15.41%,湿地面积增加1.27%;(3)山区陆地生态系统对区域气候变化非常敏感,其中降水变化是决定山区地表植被生存状态和分布的重要因素;(4)人类活动的推动作用和有益气候变化的支撑是绿洲平原区生态系统好转的原因,其中人口急剧增加和社会经济快速发展,导致绿洲平原区生态系统结构及其时空分布的主要因素。焉耆盆地及其周围区域陆地生态系统的演变对气候变化和人类活动有明显的时空尺度效应,其反应程度各不相同。  相似文献   

14.
气候变化和大规模的生态恢复使中国北方旱区植被发生了显著变化,量化气候变化和人类活动对植被动态的相对贡献,对于旱区生态系统管理和应对未来气候变化具有重要意义。目前,中国北方旱区植被变化影响因素的时间动态(2000年大规模生态恢复工程实施前后)和空间异质性(沿干旱梯度)仍需进一步的定量研究。基于多源数据,采用趋势分析、偏相关分析和随机森林模型等方法,分析了1981-2018年中国北方旱区气候和植被的时空变化规律,量化了2000年前后气候变化和人类活动对植被动态的相对贡献并分析其在干旱梯度上的空间差异性。结果表明:(1)1981-2018年期间,中国北方旱区的叶面积指数(LAI)平均增加速率为(0.0037±0.0443) a-1,且增加速率沿干旱梯度增大。2000年前仅10.46%(P<0.05)的地区显著变绿,而2000年后达到36.84%,且植被变绿主要归因于非树木植被。(2)2000年后降水对植被变绿的正效应在不同干旱梯度均增加,而在半干旱区和亚湿润干旱区,温度对植被变绿由正向促进转为负向抑制,而辐射在干旱区由负效应转向正效应。(3)2000年前后,气候变化均主导着植被的动态,贡献率分别为96.07%和73.72%,人类活动的贡献在2000年后进一步增强(从3.93%增加到26.28%),且沿着干旱梯度而增加,其中人类活动对植被变绿的贡献在半干旱地区增加最显著(+0.0289 m2 m-2 a-1P<0.05)。研究结果可为未来气候变化下中国北方旱区的植被恢复和可持续发展提供科学依据。  相似文献   

15.
Primary production, a key regulator of the global carbon cycle, is highly responsive to variations in climate. Yet, a detailed, continental‐scale risk assessment of climate‐related impacts on primary production is lacking. We combined 16 years of MODIS NDVI data, a remotely sensed proxy for primary production, with observations from 1218 climate stations to derive values of ecosystem sensitivity to precipitation and aridity. For the first time, we produced an empirically‐derived map of ecosystem sensitivity to climate across the conterminous United States. Over this 16‐year period, annual primary production values were most sensitive to precipitation and aridity in dryland and grassland ecosystems. Century‐long trends measured at the climate stations showed intensifying aridity and climatic variability in many of these sensitive regions. Dryland ecosystems in the western US may be particularly vulnerable to reductions in primary production and consequent degradation of ecosystem services as climate change and variability increase in the future.  相似文献   

16.
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.  相似文献   

17.
Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land‐cover and climate‐related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982–2008). We demonstrate an additive spatial model with 0.5° resolution, consisting of a regression component representing climate‐associated effects and a spatially correlated field representing the combined influence of other factors, including land‐use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large‐scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land‐cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology).  相似文献   

18.
There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias‐corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land‐use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land‐use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate‐induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land‐use change and climate‐driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO2 impacts varies considerably, depending on both the climate and land‐use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors – climate change, CO2 fertilization effects, fire, and land use – to the fate of the Amazon over the coming century.  相似文献   

19.
Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES storylines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES storyline. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17–38 Tg C/year between 1990 and 2100, corresponding to 1.9–2.9% of the EU*s CO2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4–10.1 Pg C between 1990 and 2100.  相似文献   

20.
Semi-arid and arid ecosystems dominated by shrubs (“dry shrublands”) are an important component of the global C cycle, but impacts of climate change and elevated atmospheric CO2 on biogeochemical cycling in these ecosystems have not been synthetically assessed. This study synthesizes data from manipulative studies and from studies contrasting ecosystem processes in different vegetation microsites (that is, shrub or herbaceous canopy versus intercanopy microsites), to assess how changes in climate and atmospheric CO2 affect biogeochemical cycles by altering plant and microbial physiology and ecosystem structure. Further, we explore how ecosystem structure impacts on biogeochemical cycles differ across a climate gradient. We found that: (1) our ability to project ecological responses to changes in climate and atmospheric CO2 is limited by a dearth of manipulative studies, and by a lack of measurements in those studies that can explain biogeochemical changes, (2) changes in ecosystem structure will impact biogeochemical cycling, with decreasing pools and fluxes of C and N if vegetation canopy microsites were to decline, and (3) differences in biogeochemical cycling between microsites are predictable with a simple aridity index (MAP/MAT), where the relative difference in pools and fluxes of C and N between vegetation canopy and intercanopy microsites is positively correlated with aridity. We conclude that if climate change alters ecosystem structure, it will strongly impact biogeochemical cycles, with increasing aridity leading to greater heterogeneity in biogeochemical cycling among microsites. Additional long-term manipulative experiments situated across dry shrublands are required to better predict climate change impacts on biogeochemical cycling in deserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号