首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
探究中纬度地区的植被物候及其对气候变化的响应,对理解生态系统对气候变化的响应以及预测区域生态系统的碳循环至关重要。本文基于2000—2018年MODIS EVI数据,利用非对称高斯函数(A-G)与动态阈值法提取森林与草地物候参数,结合气象数据探究河东地区植被物候与气候变化的响应关系。结果表明:森林与草地物候参数存在显著差异,两者生长季始期(start of growing season, SOS)的趋势均提前,生长季末期(end of growing season, EOS)的趋势分别提前和推迟,其中整体SOS呈提前趋势的面积占比61%,EOS呈推迟趋势的面积占比41%,生长季长度(length of growing season, LOS)呈延长趋势的面积占比53%;随着海拔和纬度的上升,植被SOS、EOS和LOS分别呈推迟、提前和缩短的趋势发展,但这种趋势正在减弱;季前气候对SOS和EOS存在不同程度、方向的影响,秋冬季高温推迟SOS,春季高温则提前SOS,春夏季降水增加提前EOS,秋季高温推迟EOS,且对于河东地区而言,最低气温影响更为显著;森林与草地之间对于气候变化的响应程度存...  相似文献   

2.
植被物候研究对了解全球气候变化特征具有重要意义。黄河流域空间跨度大、生态环境复杂,林草植被的物候变化特征有待进一步明确。本研究基于2000—2018年MODIS-EVI数据,采用分段Logistic和双Logistic物候模型及分别对应的曲率变化极值法和导数法对黄河流域林、草植被物候进行反演,分析物候参数的时间变化和空间差异。结果表明:研究区生长季开始期(SOS)在第90~165天,从东南到西北逐渐推迟,海拔每升高100 m, SOS推迟0.94 d,其中,森林SOS早于草地。生长季结束期(EOS)在第270~315天,从西向东南推迟,海拔每升高100 m, EOS提前0.63 d,其中,森林EOS晚于草地。生长季长度(LOS)为110~230 d,从东南向西北逐渐缩短,森林植被的LOS大于草地。研究期间,SOS呈提前趋势,幅度为4.1 d·(10 a)-1,空间上提前面积比例为73.2%,流域中部地区提前幅度较大;EOS整体呈显著推迟趋势,幅度为2.3 d·(10 a)-1,空间上推迟面积比例为63.4%,森林物候期提前和延迟都小于草地;L...  相似文献   

3.
基于生态地理分区的大兴安岭植被物候时空变化   总被引:1,自引:0,他引:1  
植被与气候的关系十分密切,植被物候可作为全球气候变化的指示器.大兴安岭位于我国最北部,对气候变化较为敏感,研究该区植被物候的时空变化对评估全球变化对陆地生态系统的影响具有重要意义.依据中国生态地理区划图,将大兴安岭划分为4个生态研究区域,本文利用GIMMS NDVI 3g遥感数据集分析1982—2012年大兴安岭整体及各生态地理分区植被物候变化.结果表明: 研究期间,所有分区植被生长季开始日期均表现为提前趋势,生长季结束日期均表现为推迟趋势.植被物候对气候因子变化敏感,尤其是对气温的敏感程度高于降水,其中,北段山地落叶针叶林区植被生长季开始日期与春季温度呈显著负相关;除南段草原区外,其他3个分区植被生长季结束日期均与秋季降水呈显著负相关.从整体来看,植被物候随海拔、纬度的变化趋势明显.  相似文献   

4.
2003-2018年米仓山地区植被物候时空变化及对气候的响应   总被引:1,自引:0,他引:1  
邵周玲  周文佐  李凤  周新尧  杨帆 《生态学报》2021,41(9):3701-3712
植被物候直接反映了植被对环境变化响应的动态过程,对研究植被与气候的关系具有重要意义。基于遥感植被时序数据,探讨秦巴山区典型山地-米仓山地区植被物候变化及其对气候的响应。利用MODIS NDVI时序数据,采用动态阈值法获取米仓山地区植被物候参数;借助于Theil Sen斜率、Mann Kendall趋势检验方法结合植被类型数据分析研究区物候时空变化;采用偏相关方法分析物候变化与气温和降水之间的关系。结果表明:(1)米仓山地区植被生长季始期(SOS)主要集中在第80-110d,海拔每上升100m,SOS大约推迟0.6d;生长季末期(EOS)主要集中在第250-300d;生长季长度(LOS)主要集中在130-210d。除低海拔区域受人类活动影响物候波动较大外,EOS和LOS随海拔变化存在2000m分界线,其下物候随海拔升高物候明显推迟或缩短,其上物候变化趋于平缓。(2)16a来植被SOS呈提前趋势,提前幅度为0.47d/a,提前的像元占74.03%,其中,达到显著提前的像元占12.21%(P<0.1);EOS整体呈提前趋势,提前幅度为0.22d/a;LOS略有延长,延长幅度为0.26d/a。(3)区域常绿型森林植被SOS晚于同垂直带的落叶型森林植被;草地、常绿阔叶灌木林SOS提前趋势最明显,变化率分别为-0.80、-0.71d/a;EOS提前趋势最明显的是针阔混交林和落叶阔叶林。(4) SOS主要受3月平均气温和4月降水的影响,3月平均气温升高以及4月降水增加导致SOS提前;EOS主要受10月降水的负向影响。  相似文献   

5.
中国东北城乡植被物候时空变化及其对地表温度的响应   总被引:1,自引:0,他引:1  
胡召玲  戴慧  侯飞  李二珠 《生态学报》2020,40(12):4137-4145
以中国东北地区的沈阳、长春、哈尔滨3个大城市及其周边的乡村为研究单元,在像元尺度上采用小波变换法对长时间序列中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer, MODIS)增强植被指数(Enhanced Vegetation Index, EVI)数据滤除噪声数据后重建平滑的EVI曲线,基于EVI曲线,采用动态阈值法提取出研究区2009—2016年植被关键物候期参数指标,即植被生长季开始时间(Start of Growing Season, SOS)和结束时间(End of Growing Season, EOS),分析各研究单元植被物候时空变化特征及其对地表温度的响应特征。结果表明:各研究单元SOS和EOS值的空间分布图存在明显的城乡差异。每一个像元所属的实际位置距离城区中心越近,其SOS值越小,EOS值越大,表明植被生长季开始日期早结束日期晚,整个植被生长期时间变长。各研究单元植被物候参数指标的年际变化趋势具有一定的相似性,即SOS随时间均呈现出提前趋势,且城区和乡村的SOS年际变化趋势保持一致,变化速率各不相同。研究区2012年的SOS值是研究时段内的最大值,从植被物候期反映来看,该年是一个最冷年,这与当年受寒潮影响,出现暴雪,低温等极端天气的气候现象相吻合。各研究单元年均地表温度(Land Surface Temperature,LST)与对应的植被关键物候期参数均有显著的相关性,SOS与LST呈显著负相关,EOS与LST呈高度正相关。即植被物候同期的平均温度越高,植被生长季的起始时间越早,结束时间越晚。  相似文献   

6.
赵心睿  刘冀  杨少康  张茜  高放  刘艳丽 《生态学报》2023,43(9):3744-3755
为探究北方地区典型植被林地、草地物候特征及其对气候变化的响应,本文基于1982—2015年的GIMMS NDVI 3gv1数据集和气象资料,采用动态阈值法提取植被物候,应用线性回归和偏相关分析法分析林、草地物候时空变化特征及其与气候变化的关系。结果表明:(1)林地生长季长度(LOS)以0.32d/a的速率极显著延长,整体表现为生长季始期(SOS)以-0.18d/a极显著提前,生长季末期(EOS)以0.14d/a极显著推迟。林地SOS提前、EOS推迟和LOS延长的区域面积占比分别为93.3%、90.4%和96.3%。(2)草地LOS以-0.01d/a的速率不显著缩短,表现为SOS以-0.09d/a不显著提前,EOS以-0.10d/a不显著提前。SOS提前、EOS提前和LOS缩短的区域占比为67.5%、69.1%和50%。(3)林地SOS主要受冬末春初的气温升高和降水增加而提前,EOS受夏季气温升高、秋季以及冬末春初降水增加而推迟。(4)草地SOS主要受春季气温升高和短波辐射减少而提前,EOS受秋季气温升高和短波辐射减少而提前,草地物候与气象因子的响应时长小于林地。  相似文献   

7.
黄土高原植被物候变化及其对季节性气候变化的响应   总被引:3,自引:0,他引:3  
受气候变化影响,全球范围内植被物候发生了显著变化,而目前针对不同植被分区类型下(荒漠草原区、典型草原区、森林草原区、落叶栎林区、落叶栎林亚区)植被物候变化及其对季节性气候变化响应的研究尚少。因此基于MODIS遥感归一化差值植被指数(MODIS NDVI:MOD13Q1)数据、中国植被区划数据及135个气象站点插值数据,利用Sen''s斜率估计、Hurst指数和高阶偏相关分析等方法,研究黄土高原2001-2018年植被物侯变化及其对季节性气候变化的响应。结果表明:(1)黄土高原植被生长季始期(SOS,Start of Growing Season)主要集中在第96-144天,子植被分区由西北向东南方向,逐渐呈现提前趋势,71.0%的像元植被SOS整体提前0-2 d/10a (α=0.05),且在未来一段时间66%的像元植被SOS继续呈现提前趋势;植被生长季末期(EOS,End of Growing Season)主要集中在第288-304天,各子植被分区植被EOS变化基本保持一致,87.6%的像元植被EOS整体延迟0-3 d/10a (α=0.05),且在未来一段时间有80%的像元植被EOS继续呈现推迟趋势。(2)黄土高原植被SOS主要受各季节温度的影响;当年春季降水导致植被SOS提前,主要分布在黄土高原中部;上年夏季和上年秋季降水增加会导致植被SOS推迟;当年春季、上年秋季和年初冬季的温度升高均会导致植被SOS提前;各子植被分区植被SOS对不同季节降水的响应存在差异,而对不同季节温度的响应具有一致性。(3)黄土高原植被EOS主要受各季节降水和秋季温度的影响;不同季节降水增加均会导致大部分植被EOS推迟;当年秋季温度导致整体区域植被EOS推迟,且各子植被区植被EOS对当年秋季温度响应具有一致性。该研究可为大尺度植被物候影响因素提供新的认识,也为植被适应未来气候变化提供借鉴。  相似文献   

8.
1982-2013年内蒙古地区植被物候对干旱变化的响应   总被引:7,自引:0,他引:7  
黄文琳  张强  孔冬冬  顾西辉  孙鹏  胡畔 《生态学报》2019,39(13):4953-4965
气候变化引起的植被物候变化正在大幅度改变生态系统,研究植被物候对干旱的响应对保护内蒙古的生态系统具有重要意义。根据1:100万植被区划,把内蒙古划分为8个植被分区,利用多时间尺度气象标准化降水蒸散指数(SPEI)和NDVI3g时序数据所反演的物候指标,分析内蒙古植被物候的时空变化及其对干旱的响应规律。结果显示:1)在1982年至2013年间,内蒙古植被受到不同时间尺度下干旱的高度控制,尤其是时间尺度干旱的影响(SPEI-3);2)对于整个研究区,生长季开始(SOS)呈提前趋势,生长季结束(EOS)呈延后趋势,生长季长度(LOS)呈延长趋势,像元比例分别为63.79%、59.77%和62.83%;3)内蒙古除荒漠植被类型地区外,同年春季和夏季初期干旱对SOS均具有延迟作用,同年秋季干旱对EOS均具有延迟作用 ;4) 不同植被类型对干旱强度指数的响应程度存在差异,响应程度集中在-10d/0.1-10d/0.1(例如,1d/0.1表示干旱强度指数每增大0.1,会导致物候指数延迟1 d,而-1d/0.1表示干旱强度指数每增大0.1,会导致物候指数提前1 d)。  相似文献   

9.
快速城市化会对植被物候带来显著影响,但当前影响城市植被物候时空变化的因素仍不清楚。本研究以京津冀城市群为研究区,采用5种拟合方法构建归一化植被指数曲线,通过阈值法获取京津冀城市群2001—2019年的城市植被物候特征,比较城市建成区与山区的春季和秋季物候,在此基础上分析降水、气温以及城市地表温度对植被物候的影响。结果表明:2001—2019年,京津冀城市群城市建成区植被生长季开始日期(SOS)平均比山区早16.88 d,城市建成区植被生长季结束日期(EOS)比山区晚12.22 d。研究期间,京津冀城市建成区植被SOS逐步延迟,而山区SOS逐步提前,并且城市建成区物候的变化率比山区快,因此,二者SOS的差值随时间变化而显著减小(-0.58 d·a-1);秋季物候方面,城市建成区和山区EOS都表现为延迟趋势,但二者差值随时间变化并不显著(-0.10 d·a-1)。城市建成区地表温度对SOS的贡献与气温较为接近;而山区地表温度对SOS的贡献仅为气温的1/2,说明城市内部的热岛效应和气温共同影响城市植被物候的变化,并且二者贡献几乎相等。本研究结果有助...  相似文献   

10.
基于不同光谱指数的植被物候期遥感监测差异   总被引:2,自引:0,他引:2  
植被物候是陆地生态系统响应气候和环境变化的一项综合性指标.遥感光谱已经被广泛用于提取植被物候期,但遥感提取的物候期与站点观测差别很大,其物理意义尚不明确.本文选取中国东北部的一景MODIS数据(2000—2014年),分析了基于红波段和近红外波段的归一化差值植被指数(NDVI)和简单比植被指数(SR)提取的植被生长季起始期(SOS)和结束期(EOS)的差异.结果表明:两者的物候期存在显著差别,基于NDVI提取的SOS比SR提取的SOS平均早18.9 d,基于NDVI提取的EOS比SR提取的EOS平均晚19.0 d,NDVI得到的生长季长度更长.基于NDVI和SR提取的物候期的年际变化也存在显著差别,超过20%的像元SOS和EOS甚至表现出相反的年际变化趋势.上述差异与两种植被指数自身的季节曲线特征和抗噪性差异有关.NDVI与SR观测数据来源完全一致,仅数学表达形式不同,提取的物候期结果却存在显著差异.说明遥感监测的植被物候期高度依赖于植被指数的数学表达形式,如何建立可靠的植被物候期遥感提取方法仍需进一步研究.  相似文献   

11.
祁连山不同植被类型的物候变化及其对气候的响应   总被引:2,自引:0,他引:2  
贾文雄  赵珍  俎佳星  陈京华  王洁  丁丹 《生态学报》2016,36(23):7826-7840
基于1982—2006年GIMMS NDVI和2000—2014年MODIS NDVI遥感数据,利用double logistic拟合方法提取了1982—2014年祁连山区不同植被的生长季始期、生长季末期和生长季长度3个重要的物候参数,分析了不同植被物候期的时间变化趋势、空间分异特征及对气候因子的响应。结果表明:(1)祁连山区不同植被的生长季始期和生长季末期随年际变化表现出波动提前或推迟,其中沼泽植被的变化波动最大;草甸植被、灌丛植被、阔叶林植被和栽培植被生长季长度出现延长趋势;(2)祁连山区植被生长季始期集中在5月初,其中阔叶林植被生长季开始最早,荒漠植被生长季开始最晚,植被生长季末期集中在9月,栽培植被生长季结束较早,荒漠植被、沼泽植被生长季结束较晚,植被生长季长度集中在110—140 d,其中阔叶林植被、针叶林植被生长季长度较长,而荒漠植被、高山植被生长季长度较短;(3)祁连山植被物候期变化趋势的空间分布表明植被生长季始期、生长季末期主要表现为提前不明显和推迟不明显,生长季长度主要表现为缩短不明显和延长不明显;(4)物候要素与气候要素相关性表明前期温度的积累有利于植被的开始生长,但当年3月的降水量对植被生长季始期同样有重要作用,不同植被生长季末期与8月、9月温度相关性较大,而与10月、11月降水的相关性较大。  相似文献   

12.
Changes in vegetation phenology directly reflect the response of vegetation growth to climate change. In this study, using the Normalized Difference Vegetation Index dataset from 1982 to 2015, we extracted start date of vegetation growing season (SOS), end date of vegetation growing season (EOS), and length of vegetation growing season (LOS) in the middle and eastern Eurasia region and evaluated linear trends in SOS, EOS, and LOS for the entire study area, as well as for four climatic zones. The results show that the LOS has significantly increased by 0.27 days/year, mostly due to a significantly advanced SOS (?0.20 days/year) and a slightly delayed EOS (0.07 days/year) over the entire study area from 1982 to 2015. The vegetation phenology trends in the four climatic zones are not continuous throughout the 34‐year period. Furthermore, discrepancies in the shifting patterns of vegetation phenology trend existed among different climatic zones. Turning points (TP) of SOS trends in the Cold zone, Temperate zone, and Tibetan Plateau zone occurred in the mid‐ or late 1990s. The advanced trends of SOS in the Cold zone, Temperate zone, and Tibetan Plateau zone exhibited accelerated, stalled, and reversed patterns after the corresponding TP, respectively. The TP did not occurred in Cold‐Temperate zone, where the SOS showed a consistent and continuous advance. TPs of EOS trends in the Cold zone, Cold‐Temperate zone, Temperate zone, and Tibetan Plateau zone occurred in the late 1980s or mid‐1990s. The EOS in the Cold zone, Cold‐Temperate zone, Temperate zone, and Tibetan Plateau zone showed weak advanced or delayed trends after the corresponding TP, which were comparable with the delayed trends before the corresponding TP. The shift patterns of LOS trends were primarily influenced by the shift patterns of SOS trends and were also heterogeneous within climatic zones.  相似文献   

13.
植被物候作为自然界规律性、周期性的现象,对自然环境尤其是气候变化有着重要的指示作用,研究其时空变化特征对陆地植被生态环境监测具有重要意义。本研究采用Savitzky-Golay滤波法重建秦岭山区2001—2018年MODIS增强植被指数时间序列影像,利用动态阈值法提取研究区春季物候信息(返青期),并对返青期多年平均值和年际变化与海拔、坡度进行相关分析。结果表明: 海拔每升高100 m,植被返青期推迟1.82 d;返青期的年际变化趋势主要集中在0~5 d·(10 a)-1。其中,呈推迟趋势的像元主要分布在低海拔地区,呈提前趋势的像元主要分布在高海拔地区。高海拔地区返青期的年际变化比低海拔地区复杂;秦岭山区植被返青期存在南北差异。北坡植被返青期多年平均值较南坡早2.9 d,南坡植被返青期的推迟程度大于北坡。南北坡植被返青期的年际变化在低海拔地区呈推迟趋势,且南北坡相差不大,而提前趋势在中高海拔地区存在显著差异。  相似文献   

14.
基于贺兰山地区98棵油松树轮样本的宽度数据、植被归一化指数(NDVI)数据以及土地覆被数据,采用VS-oscilloscope模型模拟的油松径向生长过程,研究植被冠层与树干形成层物候之间的联系。结果表明: 林地冠层与油松形成层生长结束期(EOS)显著相关,且高于草地与形成层之间的相关。油松生长开始期(SOS)和EOS分别与5—6月、8—9月的平均最低温度有关。5—6月的平均最低气温每升高1 ℃,SOS提前4.3 d;8—9月的平均最低气温每升高1 ℃,EOS推迟2.6 d。植被冠层物候与油松形成层物候的相关性受植被类型的影响;仅通过树轮生理模型模拟树木生长动态,结果可能存在偏差;利用遥感监测数据将冠层发育和形成层生长过程结合有助于更准确地了解树木生长动态。  相似文献   

15.
数据源、时间范围、空间尺度等的差异导致许多物候变化对陆地生态系统碳收支影响的研究缺少可比性。该文基于4级碳通量填充数据, 采用相对阈值方法提取了两个北美典型温带阔叶林站Harvard Forest (HF)和University of Michigan Biological Station (UMBS)共20年的物候参数(返青期、枯黄期和生长季长度), 并研究了物候变化对生态系统生产力的影响。结果表明: 1)生长季长度的延长对年累积总初级生产力(GPP)有显著贡献, 但由于呼吸作用(RE)的干扰, 生长季长度变化对年净生态系统生产力(NEP)的影响并不显著; 2)返青期的提前对上半年生态系统总初级生产力的贡献最为显著, 二者的相关系数分别为0.76 (HF)和0.93 (UMBS); 3)枯黄期的延迟对生产力的影响并不显著; 4)随着春季返青期的提前或秋季枯黄期的延迟, 上、下半年GPPRE的累积量虽均有增加趋势, 但由于各自增加的幅度不确定, 导致年NEP与二者的响应关系复杂。  相似文献   

16.
日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪   总被引:1,自引:0,他引:1  
周蕾  迟永刚  刘啸添  戴晓琴  杨风亭 《生态学报》2020,40(12):4114-4125
植被物候期(春季返青和秋季衰老)是表征生物响应和陆地碳循环的基础信息。由于常绿针叶林冠层绿度的季节变动较弱,遥感提取常绿针叶林的物候信息存在着较大的不确定性,是目前区域物候监测中的难点。利用MODIS植被指数(归一化植被指数NDVI和增强型植被指数EVI)、GOME-2日光诱导叶绿素荧光(SIF)和通量数据(总初级生产力GPP)估算2007—2011年亚热带常绿针叶林物候期,用来比较三类遥感指数估算常绿针叶林物候的差异。结果表明:基于表征光合作用物候的通量GPP数据估算得到5年内亚热带常绿针叶林生长季开始时间(SOS_(GPP))为第63天,生长季结束时间(EOS_(GPP))为第324天,生长季长度为272天;基于反映植被光合作用特征的SIF曲线获得物候信息要滞后GPP物候期,其中生长季开始时间滞后19天,生长季结束时间滞后2天;基于传统植被指数NDVI和EVI的物候期滞后GPP物候期的时间要大于SIF滞后期,其中植被指数SOS滞后SOS_(GPP)31天,植被指数EOS滞后EOS_(GPP)10—17天。虽然基于3种遥感指数估算的春季和秋季物候都滞后于通量GPP的物候期,但是卫星SIF的物候信息能够更好地捕捉常绿针叶林的生长阶段。同时,春季温度是影响森林生长季开始时间的最重要因素;秋季水分和辐射是影响生长季结束时间的关键因素。由此可见,SIF估算的亚热带常绿针叶林的春季和秋季物候的滞后时间要短于传统植被指数,能更好地追踪常绿林光合作用的季节性,为深入研究陆地生态系统碳循环及其对气候变化的响应提供重要的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号