首页 | 本学科首页   官方微博 | 高级检索  
   检索      

中国西南喀斯特地区植被变化时空特征及其成因
引用本文:吕妍,张黎,闫慧敏,任小丽,王军邦,牛忠恩,顾峰雪,何洪林.中国西南喀斯特地区植被变化时空特征及其成因[J].生态学报,2018,38(24):8774-8786.
作者姓名:吕妍  张黎  闫慧敏  任小丽  王军邦  牛忠恩  顾峰雪  何洪林
作者单位:中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101;中国科学院大学, 北京 100049,中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101;中国科学院大学 资源与环境学院, 北京 100049,中国科学院地理科学与资源研究所 资源利用与环境修复重点实验室, 北京 100101;中国科学院大学 资源与环境学院, 北京 100049,中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101,中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101,中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101;中国科学院大学, 北京 100049,中国农业科学院农业环境与可持续发展研究所 农业部旱作节水农业重点实验室, 北京 100081,中国科学院地理科学与资源研究所 生态系统网络观测与模拟重点实验室, 北京 100101;中国科学院大学 资源与环境学院, 北京 100049
基金项目:国家自然科学基金项目(41571130043);国家重大科学研究计划(2015CB954102);国家重点研发计划项目(2016YFC0500204,2016YFC0503700);中国科学院科技服务网络计划项目(KFJ-SW-STS-167)
摘    要:2000年以来,国家在中国西南喀斯特地区开展一系列生态治理工程,该地区退化生态系统得到一定程度的恢复,而2008年开展石漠化综合治理工程以来该地区的植被覆盖和生产力如何变化尚不清楚。本研究利用遥感增强型植被指数(EVI)和总初级生产力(GPP)数据,研究2000—2015年西南喀斯特地区植被EVI年均值和GPP年总量的时空变化特征,重点探讨2008年以来石漠化综合治理工程、气候变化等因素对植被覆盖及生长的影响,进而评估石漠化综合治理工程的成效。结果表明,2000—2015年西南喀斯特地区植被EVI总体显著增加,其中2008—2015年植被EVI均值和变化率分别比2000—2007年高6.9%和85.7%,EVI显著增加的区域占西南喀斯特地区的13.4%;该区域GPP年总量亦呈显著增加趋势(20.58 g C m-2a-1)。2008—2015年气温和降水对植被EVI变化趋势的贡献仅占28.3%,退耕还林还草等生态恢复措施、大气CO2浓度、大气氮沉降的增加可能是该区域植被覆盖显著增加的主要贡献因子。在100个首批石漠化综合治理试点县中,大部分试点县植被EVI的变化趋势受非气候因子的影响,其中治理面积大的县受非气候因子的影响显著高于治理面积小的县,表明石漠化综合治理工程的实施有效地促进了试点县植被覆盖的增加。

关 键 词:喀斯特  植被指数  生态系统生产力  石漠化治理
收稿时间:2018/7/25 0:00:00
修稿时间:2018/12/6 0:00:00

Spatial and temporal patterns of changing vegetation and the influence of environmental factors in the karst region of Southwest China
L&#; Yan,ZHANG Li,YAN Huimin,REN Xiaoli,WANG Junbang,NIU Zhongen,GU Fengxue and HE Honglin.Spatial and temporal patterns of changing vegetation and the influence of environmental factors in the karst region of Southwest China[J].Acta Ecologica Sinica,2018,38(24):8774-8786.
Authors:L&#; Yan  ZHANG Li  YAN Huimin  REN Xiaoli  WANG Junbang  NIU Zhongen  GU Fengxue and HE Honglin
Institution:Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Resource Utilization and Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China and Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Degraded ecosystems in the karst region of Southwest China have been restored to some extent through a series of ecological conservation projects that started in 2000. However, changes in vegetation during the ongoing rocky desertification control projects occurring in this region since 2008 are not well understood. In this study, we used an enhanced vegetation index (EVI) and gross primary productivity (GPP) derived from remote sensing data to investigate the temporal and spatial patterns of EVI and GPP during 2000-2015. Particularly, we focus on changes since 2008 and the responses of vegetation trends to multiple environmental factors in this region. Results show that the annual EVI increased drastically between 2000 and 2015. In particular, the mean and increasing trend of EVI in 2008-2015 was larger than in 2000-2007 by 6.9% and 85.7%, respectively. Ecosystems with significant increase in EVI accounted for 13.4% of the study area in 2008-2015, where annual GPP also increased remarkably with an average growth rate of 20.58 gC m-2 a-1. The contributions of temperature and precipitation to increase in EVI were 28.3%. Land cover changes due to the rocky desertification control projects and increase in atmospheric carbon dioxide and atmospheric nitrogen deposition could be the major factors causing increase in EVI. Furthermore, when we divided the 100 pilot counties in the first stage of the rocky desertification control projects into four groups according to their total area of conservation, the EVI trend attributed to non-climatic factors differed significantly among the four groups. Counties with higher conservation efforts had a larger EVI attributed to non-climatic factors, which indicated that the rocky desertification control projects play an important role in increasing vegetation cover.
Keywords:karst ecosystem  vegetation index  ecosystem productivity  rocky desertification control projects
本文献已被 CNKI 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号