首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.  相似文献   

2.
Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.  相似文献   

3.
We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose (13C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 ? as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.  相似文献   

4.
Early community assembly of soil microbial communities is essential for pedogenesis and development of organic legacies. We examined fungal and bacterial successions along a well‐established temperate glacier forefront chronosequence representing ~70 years of deglaciation to determine community assembly. As microbial communities may be heavily structured by establishing vegetation, we included nonvegetated soils as well as soils from underneath four plant species with differing mycorrhizal ecologies (Abies lasiocarpa, ectomycorrhizal; Luetkea pectinata, arbuscular mycorrhizal; Phyllodoce empetriformis, ericoid mycorrhizal; Saxifraga ferruginea, nonmycorrhizal). Our main objectives were to contrast fungal and bacterial successional dynamics and community assembly as well as to decouple the effects of plant establishment and time since deglaciation on microbial trajectories using high‐throughput sequencing. Our data indicate that distance from glacier terminus has large effects on biomass accumulation, community membership, and distribution for both fungi and bacteria. Surprisingly, presence of plants rather than their identity was more important in structuring bacterial communities along the chronosequence and played only a very minor role in structuring the fungal communities. Further, our analyses suggest that bacterial communities may converge during assembly supporting determinism, whereas fungal communities show no such patterns. Although fungal communities provided little evidence of convergence in community structure, many taxa were nonrandomly distributed across the glacier foreland; similar taxon‐level responses were observed in bacterial communities. Overall, our data highlight differing drivers for fungal and bacterial trajectories during early primary succession in recently deglaciated soils.  相似文献   

5.
In order to investigate the role of microbial community in aquatic ecology and biogeochemical cycles, the bacterial community in crab ponds was investigated and the effects of aeration and season on the bacterial community were also assessed. Total DNAs from the water samples were amplified with universal primers and the amplicons were then resolved by denaturing gradient gel electrophoresis. Bands from the resulting profiles were excised and sequenced. Cluster analysis of the resulting profiles showed that the microbial community was affected by aeration and season. The microbial community between the surface and bottom of the water was very similar. A total of fifteen bands were obtained in this study. Three of them were 91–99% similar to uncultured bacterium clones. Three were 95–99% similar to uncultured Verrucomicrobia bacteria. Three were 97–100% similar to Actinobacterium sp.. Two were similar to Candidatus Limnoluna rubra with similarity 96 and 99%, respectively. Four were 99% similar to Rhodococcus sp., 100% similar to Sporosarcina sp., 100% similar to Stenotrophomonas sp., and 98% similar to Hydrogenophaga sp., respectively. The concentrations of dissolved oxygen, total nitrogen, total phosphorous, nitrite, and ammonia and pH values were significantly affected by season while only the pH value and the concentrations of dissolved oxygen and total nitrogen were significantly affected by aeration.  相似文献   

6.
Li  Yang  Sun  Qingye  Zhan  Jing  Yang  Yang  Wang  Dan 《Applied microbiology and biotechnology》2017,101(6):2549-2561

Native soil amendment has been widely used to stabilize mine tailings and speed up the development of soil biogeochemical functions before revegetation; however, it remains poorly understood about the response of microbial communities to ecological restoration of mine tailings with soil-covered strategy. In this study, microbial communities along a 60-cm profile were investigated in mine tailings during ecological restoration of two revegetation strategies (directly revegetation and native soil covered) with different plant species. The mine tailings were covered by native soils as thick as 40 cm for more than 10 years, and the total nitrogen, total organic carbon, water content, and heavy metal (Fe, Cu, and Zn) contents in the 0–40 cm intervals of profiles were changed. In addition, increased microbial diversity and changed microbial community structure were also found in the 10–40 cm intervals of profiles in soil-covered area. Soil-covered strategy rather than plant species and soil depth was the main factor influencing the bacterial community, which explained the largest portion (29.96%) of the observed variation. Compared directly to revegetation, soil-covered strategy exhibited the higher relative abundance of Acidobacteria and Deltaproteobacteria and the lower relative abundance of Bacteroidetes, Gemmatimonadetes, Betaproteobacteria, and Gammaproteobacteria. PICRUSt analysis further demonstrated that soil-covered caused energy metabolic functional changes in carbon, nitrogen, and sulfur metabolism. Given all these, the soil-covered strategy may be used to fast-track the establishment of native microbial communities and is conducive to the rehabilitation of biogeochemical processes for establishing native plant species.

  相似文献   

7.
Semi-natural grassland soils are frequently fertilised for agricultural improvement. This practice often comes at a loss of the indigenous flora while fast-growing nitrogen-responsive species, such as Lolium perenne, take over. Since soil microbial communities depend on plant root exudates for carbon and nitrogen sources, this shift in vegetation is thought to influence soil microbial community structure. In this study, we investigated the influence of different plant species, fertilisation and L. perenne ingression on microbial communities in soils from three semi-natural Irish grasslands. Bacterial and fungal community compositions were determined by automated ribosomal intergenic spacer analysis, and community changes were linked to environmental factors by multivariate statistical analysis. Soil type had a strong effect on bacterial and fungal communities, mainly correlated to soil pH, as well as soil carbon and nitrogen status. Within each soil type, plant species composition was the main influencing factor followed by nitrogen fertilisation and finally Lolium ingression in the acidic upland and mesotrophic grassland. In the alkaline grassland, however, Lolium ingression had a stronger effect than fertilisation. Our results suggest that a change in plant species diversity strongly influences the microbial community structure, which may subsequently lead to significant changes in ecosystem functioning.  相似文献   

8.
Microbial communities in plant roots provide critical links between above‐ and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap‐plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.  相似文献   

9.
不同生境黑果枸杞根际与非根际土壤微生物群落多样性   总被引:2,自引:0,他引:2  
李岩  何学敏  杨晓东  张雪妮  吕光辉 《生态学报》2018,38(17):5983-5995
研究典型生境黑果枸杞根际与非根际土壤微生物群落多样性及其与土壤理化性质间的关系,为进一步研究黑果枸杞抗逆性提供理论数据。采集新疆精河县艾比湖地区(EB)盐碱地、乌苏市(WS)路旁荒地、五家渠市(WQ)人工林带的黑果枸杞根际与非根际土壤,利用Illumina-MiSeq高通量测序技术分析细菌和真菌群落组成和多样性。结果表明:根际土壤细菌多样性高于非根际土壤(WQ除外),而根际真菌多样性低于非根际土壤。WQ非根际土壤细菌和真菌多样性均高于EB和WS;根际细菌多样性排序为EBWSWQ,根际真菌多样性排序为WSEBWQ。根际土壤优势细菌门依次是变形菌门、拟杆菌门、放线菌门、酸杆菌门,真菌优势门为子囊菌门、担子菌门。根际土壤细菌变形菌门、拟杆菌门、酸杆菌门的相对丰度高于非根际土壤,而厚壁菌在根际土壤中的丰度显著降低,真菌优势门丰度在根际土和非根际土中的变化趋势因地区而异; Haliea、Gp10、Pelagibius、Microbulbifer、假单胞菌属、Thioprofundum、Deferrisoma是根际土壤细菌优势属;多孢子菌属、支顶孢属、Corollospora、Cochlonema是根际真菌优势属。细菌、真菌优势类群(门、属)的组成以及丰富度存在地区间差异,厚壁菌门在EB地区的丰富度显著高于含盐量较低的WS、WQ;盐碱生境EB中根际土壤嗜盐细菌的丰度高于非盐碱生境(WQ、WS),如盐单胞菌属、动性球菌属、Geminicoccu、Pelagibius、Gracilimonas、Salinimicrobium等。小囊菌属是EB根际真菌的最优势属,Melanoleuca是WQ和WS的最优势属,地孔菌属、Xenobotrytis、Brachyconidiellopsis、多孢子菌属等在EB根际土壤中的丰度显著高于WQ和WS。非盐碱生境(WS和WQ)的微生物群落之间的相似性较高,并且高于与盐碱环境(EB)之间的相似性,表明土壤含盐量对微生物群落组成丰度具有重要的影响。  相似文献   

10.
11.
土壤微生物是生态系统维持正常结构与功能的重要组成部分,为探究盐城滩涂典型湿地土壤微生物群落结构特征,以江苏盐城滩涂互花米草、藨草、盐地碱蓬、芦苇及淤泥质光滩5种典型群落为对象,采用16S rRNA高通量测序技术分析0—10 cm(表层)、10—30 cm(中层)、30—60 cm(深层)土壤微生物多样性及群落结构。结果表明:(1)几种植物群落间,土壤微生物群落结构差异较大,主要体现在细菌群落结构的差异性,古菌群落结构差异相对较小。光滩与植物群落间,在土壤细菌种类及相对丰度上差异相对较大,互花米草群落与本土植物群落间,在微生物群落的细菌种类组成上存在较大差异;藨草群落土壤表层微生物群落结构与互花米草群落相似,深层与盐地碱蓬、芦苇群落相似。(2)同一群落不同层次土壤微生物群落结构相似,差异小于不同群落间土壤微生物群落的结构差异性;不同群落对应层次间,表深层土壤中五种群落土壤微生物多样性存在显著差异,中层土壤中五种群落微生物多样性差异不显著。总体上,植物群落类型对土壤微生物群落结构的影响大于土壤深度;与本土植物群落相比,互花米草群落土壤主要优势门微生物种类差异较小,但部分优势门微生物相对丰度...  相似文献   

12.
Forest-to-pasture conversion is known to cause global losses in plant and animal diversity, yet impacts of livestock management after such conversion on vital microbial communities in adjoining natural ecosystems remain poorly understood. We examined how pastoral land management practices impact soil microorganisms in adjacent native forest fragments, by comparing bacterial communities sampled along 21 transects bisecting pasture–forest boundaries. Our results revealed greater bacterial taxon richness in grazed pasture soils and the reduced dispersal of pasture-associated taxa into adjacent forest soils when land uses were separated by a boundary fence. Relative abundance distributions of forest-associated taxa (i.e., Proteobacteria and Nitrospirae) and a pasture-associated taxon (i.e., Firmicutes) also suggest a greater impact of pastoral land uses on forest fragment soil bacterial communities when no fence is present. Bacterial community richness and composition were most related to changes in soil physicochemical variables commonly associated with agricultural fertilization, including concentrations of Olsen P, total P, total Cd, delta 15N and the ratio of C:P and N:P. Overall, our findings demonstrate clear, and potentially detrimental effects of agricultural disturbance on bacterial communities in forest soils adjacent to pastoral land. We provide evidence that simple land management decisions, such as livestock exclusion, can mitigate the effects of agriculture on adjacent soil microbial communities.  相似文献   

13.
The microbial communities of high‐latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C and N were previously observed after long‐term nutrient additions. To analyse the role of microbial communities in these losses, we utilized 16S rRNA gene tag pyrosequencing coupled with community‐level physiological profiling to describe changes in MAT bacterial communities after short‐ and long‐term nutrient fertilization in four sets of paired control and fertilized MAT soil samples. Bacterial diversity was lower in long‐term fertilized plots. The Acidobacteria were one of the most abundant phyla in all soils and distinct differences were noted in the distributions of Acidobacteria subgroups between mineral and organic soil layers that were also affected by fertilization. In addition, Alpha‐ and Gammaproteobacteria were more abundant in long‐term fertilized samples compared with control soils. The dramatic increase in sequences within the Gammaproteobacteria identified as Dyella spp. (order Xanthomonadales) in the long‐term fertilized samples was confirmed by quantitative PCR (qPCR) in several samples. Long‐term fertilization was also correlated with shifts in the utilization of specific substrates by microbes present in the soils. The combined data indicate that long‐term fertilization resulted in a significant change in microbial community structure and function linked to changes in carbon and nitrogen availability and shifts in above‐ground plant communities.  相似文献   

14.
Viruses can affect microbial dynamics, metabolism and biogeochemical cycles in aquatic ecosystems. However, viral diversity and functions in agricultural soils are poorly known, especially in the rhizosphere. We used virome analysis of eight rhizosphere and bulk soils to study viral diversity and potential biogeochemical impacts in an agro-ecosystem. The order Caudovirales was the predominant viral type in agricultural soils, with Siphoviridae being the most abundant family. Phylogenetic analysis of the terminase large subunit of Caudovirales identified high viral diversity and three novel groups. Viral community composition differed significantly between bulk and rhizosphere soils. Soil pH was the main environmental driver of the viral community structure. Remarkably, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes were detected in viromes, including glycoside hydrolases, carbohydrate esterases and carbohydrate-binding modules. These results demonstrate that virus-encoded putative auxiliary metabolic genes or metabolic genes that may change bacterial metabolism and indirectly contribute to biogeochemical cycling, especially carbon cycling, in agricultural soil.  相似文献   

15.
Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were found dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also evidenced, with Proteobacteria clones being prevalent in libraries derived from whole microaggregates. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.  相似文献   

16.
Lee SH  Kim CG  Kang H 《Microbial ecology》2011,61(3):646-659
We assessed the temporal dynamics of bacterial and fungal communities in a soil ecosystem supporting genetically modified (GM) rice (Oryza sativa L., ABC-TPSP; fusion of trehalose-6-phosphate synthase and phosphatase). Using terminal restriction fragment length polymorphism analysis and real-time quantitative PCR, we compared bacterial and fungal communities in the soils underlying GM rice (ABC-TPSP), and its host cultivar (Nakdong) during growing seasons and non-growing seasons. Overall, the soils supporting GM and non-GM rice did not differ significantly in diversity indices, including ribotype numbers, for either bacteria or fungi. The diversity index (H) in both the bacterial and fungal communities was correlated with water content, dissolved organic carbon (DOC), and ammonium nitrogen, and the correlation was stronger in fungi than in bacteria. Multivariate analysis showed no differences in microbial community structures between the two crop genotypes, but such differences did appear in time, with significant changes observed after harvest. Gene copy number was estimated as 108~1011 and 105~107 per gram of soil for bacteria and fungi, respectively. As observed for community structure, the rice genotypes did not differ significantly in either bacterial- or fungal-specific gene copy numbers, although we observed a seasonal change in number. We summarize the results of this study as follows. (1) GM rice did not influence soil bacterial and fungal community structures as compared to non-GM rice in our system, (2) both bacterial and fungal communities changed with the growth stage of either rice genotype, (3) fungal communities were less variable than bacterial communities, and (4) although several environmental factors, including ammonium nitrogen and DOC correlated with shifts in microbial community structure, no single factor stood out.  相似文献   

17.
O'Donnell  Anthony G.  Seasman  Melanie  Macrae  Andrew  Waite  Ian  Davies  John T. 《Plant and Soil》2001,232(1-2):135-145
Here we report on a range of studies designed to understand the link between diversity and function in soils and in particular how plants and fertilisers might interact with microbial community dynamics in soils. The data presented indicate that although plants and fertilisers do impact on microbial community structure, the relationship between diversity, community structure and function remains complex and difficult to interpret using currently available chemical and molecular fingerprinting techniques. The paper assesses plants and management practices as drivers of change in soil and argues that whilst understanding diversity per se is unlikely to contribute to our understanding of function, an appreciation of what causes communities to change and also the relative importance of such drivers, could lead to new insights into the sustainable management and conservation of soils and natural resources.  相似文献   

18.
Soil microbial communities are often not resistant to the impact caused by microbial invasions, both in terms of structure and functionality, but it remains unclear whether these changes persist over time. Here, we used three strains of Escherichia coli O157:H7 (E. coli O157:H7), a species used for modelling bacterial invasions, to evaluate the resilience of the bacterial communities from four Chinese soils to invasion. The impact of E. coli O157:H7 strains on soil native communities was tracked for 120 days by analysing bacterial community composition as well as their metabolic potential. We showed that soil native communities were not resistant to invasion, as demonstrated by a decline in bacterial diversity and shifts in bacterial composition in all treatments. The resilience of native bacterial communities (diversity and composition) was inversely correlated with invader's persistence in soils (R2 = 0.487, p < 0.001). Microbial invasions also impacted the functionality of the soil communities (niche breadth and community niche), the degree of resilience being dependent on soil or native community diversity. Collectively, our results indicate that bacteria invasions can potentially leave a footprint in the structure and functionality of soil communities, indicating the need of assessing the legacy of introducing exotic species in soil environments.  相似文献   

19.
树种选择是林下山参护育成败的关键,研究树叶凋落物对人参土壤养分、微生物群落结构组成的影响,旨在为林下山参护育选择适宜林地及农田栽参土壤改良提供科学依据和理论指导。通过盆栽试验,研究添加5.0 g色木槭Acer mono.Maxim.var.mono(A)、赤松Pinus densiflora Sieb.et Zucc.(B)、胡桃楸Juglans mandshurica Maxim.(C)、紫椴Tilia amurensis Rupr.(D)、蒙古栎Quercus mongolica Fisch.ex Ledeb.(E)树叶凋落物到土壤中,种植人参(Panax ginseng C.A.meyer)后研究土壤理化性质以及微生物群落结构的变化。结果表明:添加不同树叶处理后人参土壤性质发生改变,土壤p H值显著高于对照土壤5.91(P0.05),土壤全氮、速效氮磷、微生物碳氮在所有树叶处理中显著增加(P0.05),而土壤容重、速效钾和C/N在添加树叶处理中降低。18个土壤样品基因组,经16S和ITS1测序分别得到6064和1900个OUTs。其中细菌涵盖了42门、117纲、170目、213科、225属,真菌涵盖了24门、98纲、196目、330科、435属。不同树叶处理人参土壤细菌和真菌地位发生改变,细菌Proteobacteria是树叶分解的关键微生物,添加树叶后其多样性显著高于对照(P0.05)。而细菌Bacteroidetes和真菌Basidiomycota可能是区别阔叶林和针叶林树种的关键微生物,针叶林中含量显著低于阔叶林(P0.05),而真菌Ascomycota是针叶林分解的关键微生物。进一步从不同分类水平上得到特定树叶凋落物的特异细菌和真菌。典型相关分析(CDA)表明细菌Bacteroidetes、Chloroflexi、Actinobacteria及真菌Basidiomycota、Zygomycota、Chytridiomycota及Ascomycota的位置及多样性的改变均与土壤因子SMBN、TN、AP、SOC、AK、C/N、p H有关。综上所述,添加不同树叶后不仅提高土壤微生物量碳氮、改善土壤理化性质,同时改变微生物群落结构组成,不同树叶处理土壤理化性质不同导致人参土壤微生物组成的差异,本结果对于林下参选地和农田栽参土壤微生物改良具有理论指导作用。  相似文献   

20.

Aim

This study investigated the effects of environmental variables on the bacterial and fungal communities of the Beilu River (on the Tibetan Plateau) permafrost soils with different vegetation types.

Methods and Results

Microbial communities were sampled from meadow, steppe and desert steppe permafrost soils during May, June, August and November, and they were analysed by both pyrosequencing and the use of Biolog EcoPlates. The dominant bacterial and fungal phyla in meadow and steppe soils were Proteobacteria and Ascomycota, whereas Actinobacteria and Basidiomycota predominated in desert steppe soils. The bacterial communities in meadow soils degraded amines and amino acids very rapidly, while polymers were degraded rapidly by steppe communities. The RDA patterns showed that the microbial communities differed greatly between meadow, steppe and desert steppe, and they were related to variations in the soil moisture, C/N ratio and pH. A UniFrac analysis detected clear differences between the desert steppe bacterial community and others, and seasonal shifts were observed. The fungal UniFrac patterns differed significantly between meadow and steppe soils. There were significant correlations between the bacterial diversity (H′) and soil moisture (= 0·506) and C/N (= 0·527). The fungal diversity (Hf′) was significantly correlated with the soil pH (= 0·541).

Conclusion

The soil moisture, C/N ratio and pH were important determinants of the microbial community structure in Beilu River permafrost soils.

Significance and Impact of the Study

These results may provide a useful baseline for predicting the variation in microbial communities in response to climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号