首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
为了寻找日本血吸虫 (Schistosoma japonicum, Sj) 新的疫苗候选基因并进行免疫效果研究,用 Sj 雌虫抗原免疫家兔制备血清,对Sj成虫 cDNA 文库进行免疫筛选,将获得的新基因 ( 命名为Sj-F1, GenBank 登录号为 AY261995) 克隆入原核表达载体 pTWIN1 和真核表达载体 pcDNA3 ,经 PCR 、限制性酶切筛选和鉴定阳性重组子. 将 pTWIN1/Sj-F1 质粒转化大肠杆菌 ER2566,在低温和低 IPTG 浓度下诱导表达可溶性重组融合蛋白 (rSj-F1/intein2),并经 SDS- 聚丙烯酰胺凝胶电泳 (SDS-PAGE) 和蛋白质印迹 (Western blot) 分析鉴定. 将 pcDNA3/Sj-F1 质粒转化大肠杆菌 ER2502 ,大量制备 DNA 疫苗. 用重组融合蛋白和 DNA 疫苗免疫小鼠,末次免疫后 2 周用Sj尾蚴进行攻击感染. 感染后 42 天剖杀冲虫,计算减虫率和减卵率. 感染前采血用 ELISA 法检测抗体. 免疫保护效果测定显示:重组蛋白疫苗以 FCA 作佐剂经皮下免疫和以壳聚糖作佐剂经粘膜免疫分别获得了 28.07%、 24.69% 的减虫率和 48.30% 、 46.38% 的减卵率; DNA 疫苗 (pcDNA3/Sj-F1) 单独免疫获得了 18.47% 的减虫率和 35.06% 的减卵率;用 DNA 疫苗启动免疫后用重组蛋白疫苗经皮下加强免疫,减虫率和减卵率分别提高到了 40.42% 和 56.17%;用 DNA 疫苗启动免疫后用重组蛋白疫苗经黏膜加强免疫,减虫率和减卵率增高更明显,分别提高到了 42.38% 和 62.87%. 结果表明,Sj-F1 重组蛋白疫苗及 DNA 疫苗均可诱导小鼠产生部分抗血吸虫感染的保护力,两者联合免疫保护效果优于单一疫苗.  相似文献   

2.
To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.  相似文献   

3.
4.
Schistosomiasis is listed as one of most important tropical diseases and more than 200 million people are estimated to be infected. Development of a vaccine is thought to be the most effective way to control this disease. Recombinant 26-kDa glutathione S-transferase (rSjGST) has previously been reported to achieve a worm reduction rate of 42–44%. To improve the efficiency of the vaccine against Schistosoma japonicum, we immunized mice with a combination of pcDNA vector-encoded 26-kDa SjGST (pcDNA/SjGST), IL-12 expressing-plasmid (pIL-12), and rSjGST. Co-vaccination with pcDNA/SjGST, pIL-12, and rSjGST led to a reduction in worm burden, hepatic egg burden, and the size of liver tissue granulomas than that in the untreated infection controls. In addition, we detected high levels of specific IgG, IgG1, and IgG2a against the rSjGST antigen in infected mice vaccinated with this combination of pcDNA/SjGST, pIL-12, and rSjGST. Moreover, high expression levels of Th2 cytokines, including IL-4 and IL-10, were also detected in this group, without diminished levels of IL-12, INF-γ, and TNF-α cytokines that are related to parasite killing. In conclusion, we have developed a new vaccination regimen against S. japonicum infection and shown that co-immunization with pcDNA/SjGST vaccine, pIL-12, and rSjGST has significant anti-parasite, anti-hepatic egg and anti-pathology effects in mice. The efficacy of this vaccination method should be further validated in large animals such as water buffalo. This method may help to reduce the transmission of zoonotic schistosomiasis japonica.  相似文献   

5.
To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamydia-induced upper genital tract gross pathology and histopathological characterization were also detected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were significantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vaccinated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against pathological consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immunization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.  相似文献   

6.
寻找保护性效果更好的抗原分子一直是抗血吸虫病疫苗研发领域的热点和难点。国内外筛选日本血吸虫 (Schisto somajaponicum)保护性抗原分子采取的主要策略有 2种 :一是通过构建血吸虫某一生活史cDNA文库 ,采用探针 (核酸或抗体 )从文库或文库表达产物中筛选出特异性抗原基因 ,再逐一评估其保护性效果。该策略的主要缺陷是筛选操作费时费力 ,且效率不高。另一途径则是根据已知的曼氏血吸虫或其它种 (株 )保护性抗原基因序列 ,通过PCR或核酸探针等技术筛选与之同源的相应抗原分子 ,这一方法 (尤其是PCR方法 )尽…  相似文献   

7.
The aim of this study was to construct and evaluate the immunity efficacy of the DNA multivalent vaccine pVIVO2SjFABP-23. The vaccine was constructed and produced as follows. Forty BALB/c mice were divided into four groups designated pVIVO2, pVIVO2Sj23, pVIVO2SjFABP and pVIVO2SjFABP-23. Each mouse was immunized with 100 μg of the corresponding plasmid DNA by intramuscular injection. 28 days post-vaccination, the mice were challenged with S. japonicum cercariae, and the worm and egg burdens were determined 42 days post-challenge. Serum samples were collected from all the mice before and after vaccination and at the end of the experiment, and used for antibody detection. The IFN-γ and IL-4 levels were quantified in the supernatants of specifically stimulated spleen cells. The number of worms was reduced by 52%, 40% and 42% in mice respectively immunized with pVIVO2SjFABP-23, pVIVO2Sj23 or pVIVO2SjFABP. A respective 61%, 38% and 39% egg reduction was determined relative to those mice that only received the empty pVIVO2 plasmid. pVIVO2SjFABP-23 immunization increased IgG levels against SWAP and SEA. Increased IFN-γ levels were detected in the supernatant of specific stimulated spleen cells from mice immunized with the 3 different constructs. The multivalent DNA vaccine developed induced higher levels of protection than the two monovalent tested vaccines.  相似文献   

8.
X Wang  F Liu  S Zhou  Z Xu  J Hoellwarth  X Chen  L He  R Zhang  F Liu  J Wang  C Su 《PloS one》2012,7(7):e40359
CD4(+)CD25(+) regulatory T cells (Tregs) do not only influence self-antigen specific immune responses, but also dampen the protective effect induced by a number of vaccines. The impact of CD4(+)CD25(+) Tregs on vaccines against schistosomiasis, a neglected tropical disease that is a major public health concern, however, has not been examined. In this study, a DNA vaccine encoding a 26 kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST) was constructed and its potential effects were evaluated by depleting CD25(+) cells prior to pVAX1-Sj26GST immunization. This work shows that removal of CD25(+) cells prior to immunization with the pVAX1-Sj26GST schistosomiasis DNA vaccine significantly increases the proliferation of splenocytes and IgG levels. However, CD25(+) cell-depleted mice immunized with pVAX1-Sj26GST show no improved protection against S. japonicum. Furthermore, depletion of CD25(+) cells causes an increase in both pro-inflammatory cytokines (e.g. IFN-γ, GM-CSF and IL-4) and an anti-inflammatory cytokine (e.g. IL-10), with CD4(+)CD25(-) T cells being one of the major sources of both IFN-γ and IL-10. These findings indicate that partial CD25(+) cell depletion fails to enhance the effectiveness of the schistosome vaccine, possibly due to IL-10 production by CD4(+)CD25(-) T cells, or other cell types, after CD25(+) cell depletion during vaccination.  相似文献   

9.
Schistosomiasis is an endemic disease that affects 200 million people worldwide. DNA-based vaccine is a promising strategy to induce protective immunity against schistosomiasis, since both humoral and cellular immune responses are involved in parasite elimination. In this study, we evaluated the ability of Sm14 cDNA alone or in association with a plasmid expressing murine interleukin (IL)-12 to induce protection against challenge infection. Mice were immunized with four doses of the DNA vaccine and the levels of protection were determined by worm burden recovery after challenge infection. Specific antibody production to rSm14 was determined by ELISA, and cytokine production was measured in splenocyte culture supernatants stimulated with rSm14 and in bronchoalveolar lavage of vaccinated mice after challenge infection. DNA immunization with pCI/Sm14 alone induced 40.5% of worm reduction. However, the use of pCI/IL-12 as adjuvant to pCI/Sm14 immunization failed to enhance protection against challenge infection. Protection induced by pCI/Sm14 immunization correlates with specific IgG antibody production against Sm14, Th1 type of immune response with high levels of interferon (IFN)-gamma and low levels of IL-4 in splenocyte culture supernatants and in bronchoalveolar lavage after challenge infection. IL-12 co-administration with pCI/Sm14 induced a significant production of nitric oxide in splenocyte culture supernatants and also lymphocyte suppression, with reduced percentage of T cells producing IFN-gamma and tumor necrosis factor-alpha.  相似文献   

10.
We previously reported that immunization with intact live cells from schistosomula of Schistosoma japonicum (S.j) partially protected the Kunming strain of mice from challenge infection. In the present work, 2 immune protective experiments were designed to further validate the protective effect induced by this type of vaccine and to optimize the immunization protocol, including the number of inoculations and parasite stages from which immunogenic cells were derived. Three antigens derived from 18-day-old postinfection live (LLC) and dead (DLC) larval worm cells and from dead 42-day-old postinfection adult worm cells (DAC) were used as immunogens. Our results demonstrate that live cells from 18-day-old worms are capable of inducing significant protection in mice using a murine-Sj challenge model as shown by reduction rates of worm recoveries and egg burdens. The development of adult worms was stunted. A Th1-biased immune response was reflected in the protected groups as evidenced by the ratio of IgG2a/IgG1. A 38-kDa polypeptide was recognized by sera from LLC immunized animals. We demonstrate that live parasite cells are a source of novel protective antigens that can be exploited for vaccine development.  相似文献   

11.
In order to explore the high performance bivalent DNA-based vaccine against schistosomes, SjFABP and Sj26GST were selected and used to construct a vaccine. Two strategies were used to construct the bivalent DNA vaccine. In the first strategy, a plasmid encoding antigen in the secreted form was used, while in the other, a plasmid encoding a truncated form of SjFABP and Sj26GST targeted to the cell surface was used. Various parameters, including antibody and cytokine response, proliferation, histopathological examination, and characterization of T cell subsets were used to evaluate the type of immune response and the level of protection against challenge infection. Injection with secreted pIRES-sjFABP-sj26GST significantly increased the levels of antibody, splenocyte proliferation, and production of IFN-γ, compared with membrane-anchored groups. Analysis of splenic T cell subsets showed that the secreted vaccine significantly increased the percentage of CD3+CD4+ and CD3+CD8+ T cells. Liver immunopathology (size of liver granulomas) was significantly reduced in the secreted group compared with the membrane-anchored groups. Moreover, challenge experiments showed that the worm and egg burdens were significantly reduced in animals immunized with recombinant vaccines. Most importantly, secreted Sj26GST-SjFABP markedly enhanced protection, by reducing worm and egg burdens by 31.8% and 24.78%, respectively, while the membrane-anchored group decreased worm and egg burdens by 24.80% and 18.80%, respectively. Taken together, these findings suggest that the secretory vaccine is more promising than the membrane-anchored vaccine, and provides support for the development and application of this vaccine.  相似文献   

12.
辐射敏感蛋白23具有核苷酸切除修复功能,在泛素蛋白酶体途径中起到重要作用。本研究利用PCR技术克隆了日本血吸虫辐射敏感蛋白23(Sj RAD23)编码的c DNA序列,成功获得Sj RAD23的基因序列,其ORF为1 053 bp。构建Sj RAD23基因重组表达质粒p ET28a(+)-Sj RAD23,并在大肠杆菌BL21中成功诱导表达,重组蛋白在上清和沉淀中都有存在。利用免疫组化技术检测该蛋白在虫体的分布情况,该蛋白广泛分布在日本血吸虫虫体被膜。用重组蛋白免疫BALB/c小鼠后,免疫小鼠血清中检测到较高水平的特异性Ig G、Ig G1和Ig G2a。Western blotting分析显示重组蛋白能够被日本血吸虫成虫可溶性抗原免疫小鼠血清所识别。用重组蛋白r Sj RAD23免疫结果与206佐剂对照组比较,r Sj RAD23在BALB/c小鼠中诱导了35.94%减虫率,40.59%肝脏减卵率。结果表明Sj RAD23具有作为疫苗候选分子的潜力。  相似文献   

13.
1071-bp fragment was obtained from the Schistosoma japonicum (Chinese strain) adult cDNA library after the 3' and 5' ends of the incomplete expression sequence tag (EST) of succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum (SjSDISP) were amplified by the anchored PCR with 2pairs of primers designed according to the EST of SjSDISP and the sequence of multiclone sites of the library vector. Sequence analysis indicated that the fragment was a full-length cDNA with a complete open reading frame (ORF), encoding 278 amino acid residues. The fragment was cloned into prokaryotic expression vector pQE30, and subsequently sequenced and expressed in Escherichia coll.SDS-PAGE and Western-blot analyses showed that the recombinant protein was about 32 kD and could be recognized by the polyclonal antisera from rabbits immunized with Schistosoma japonicum adult worm antigen. Compared with the FCA controls, mice vaccinated with rSjSDISP (test) or rSjGST (positive control) all revealed high levels of specific antibody and significant reduction in worm burden, liver eggs per gram (LEPG), fecal eggs per gram (FEPG) and intrauterine eggs. These results suggest that SjSDISP may be a novel and partially protective vaccine candidate against schistosomiasis. In contrast to the worm burden reduction rate, the higher degree of egg reduction rate in the test group also suggested that SjSDISP vaccine may primarily play a role in anti-embryonation or anti-fecundity immunity.  相似文献   

14.
日本血吸虫新基因Sj-MA的克隆、表达及保护性免疫   总被引:3,自引:1,他引:2  
为发现新基因 ,寻找日本血吸虫病新疫苗候选分子 ,采用Sj雄虫免疫血清筛选Sj成虫cDNA文库。经测序发现新基因Sj MA含有一个完整的阅读框 ,推测其由 2 4 9个氨基酸组成 ,编码分子量为 2 8.8kD的可溶性蛋白质 ,并带有多个能被磷酸化激活的位点 ,提示其可能为一重要的信息传递分子。将Sj MA的cDNA亚克隆至原核表达载体pGEX 5X ,获得Sj MA原核表达的重组体rSj MA/GST ,并在E .coli中高效表达为谷胱甘肽S 转移酶 (GST)融合蛋白 ,分子量为 5 4 .8kD ,Western印迹显示融合蛋白质能被抗雄虫和抗GST血清识别。融合蛋白质免疫小鼠可诱导 34.2 9%的减虫率 ,与对照组有显著性差异 (P <0 .0 0 1 )。表明新基因Sj MA表达的蛋白质能诱导小鼠的抗日本血吸虫的保护性免疫 ,提示其作为日本血吸虫疫苗候选分子的潜在价值  相似文献   

15.
Schistosomiasis is a major public health problem that primarily affects developing countries. Although schistosomicidal drugs exist, the development of an efficacious vaccine would potentially be the most powerful means of controlling this disease. Previous studies have shown that vaccination with selected protective epitopes successfully induced partial protection and/or reduced female fecundity in animal models. Thus, we investigated whether the T cell epitope P5 from the host-interactive tegument of Schistosoma japonicum 22.6 (S. japonicum) could act as a protective epitope. The protective potential of P5 in a vaccine against S. japonicum was determined by using a T cell epitope based peptide-DNA dual vaccine (PDDV). In our experiments, the vaccine construct (P5-18K-PDDV) contains the peptide of the T cell epitope (P5) and plasmid DNA, encoding P5 and adjuvant GM-CSF. We show that P5-18K-PDDV induced both cell-mediated and humoral immune responses in vivo and achieved partial protection against S. japonicum infection in C57BL/6J mice. Histopathological studies reveal that P5-18K-PDDV immunized mice had substantially reduced liver pathology compared to the control groups. Together, these results suggest that P5 could be used as a vaccine immunogen for both worm killing and disease prevention against S. japonicum.  相似文献   

16.
This study aimed to evaluate the efficacy of fructose-1,6-bis phosphate aldolase (SMALDO) DNA vaccination against Schistosoma mansoni infection using different routes of injection. The SMALDO has been cloned into the eukaryotic expression vector pcDNA3.1/V5-His TOPO-TA and was used in injecting Swiss albino mice intramuscularly (IM), subcutaneously (SC), or intraperitoneally (IP) (50 µg/mouse). Mice vaccinated with non-recombinant pcDNA3.1 served as controls. Each group was immunized 4 times at weeks 0, 2, 4, and 6. Two weeks after the last booster dose, all mice groups were infected with 80 S. mansoni cercariae via tail immersion. At week 8 post-infection, animals were sacrificed for assessment of parasitological and histopathological parameters. High anti-SMALDO IgG antibody titers were detected in sera of all vaccinated groups (P<0.01) compared to the control group. Both the IP and SC vaccination routes resulted in a significant reduction in worm burden (46.2% and 28.9%, respectively, P<0.01). This was accompanied by a significant reduction in hepatic and intestinal egg counts (41.7% and 40.2%, respectively, P<0.01) in the IP group only. The number of dead eggs was significantly increased in both IP and IM groups (P<0.01). IP vaccination recorded the highest significant reduction in granuloma number and diameter (54.7% and 29.2%, respectively, P<0.01) and significant increase in dead miracidia (P<0.01). In conclusion, changing the injection route of SMALDO DNA vaccination significantly influenced the efficacy of vaccination. SMALDO DNA vaccination via IP route could be a promising protective and anti-pathology vaccine candidate against S. mansoni infection.  相似文献   

17.
Approximately 200 million people worldwide currently suffer from schistosomiasis, one of the most important human parasitic diseases. Although an established infection can be treated with anthelminthics and praziquantel, vaccination would be the ideal method for integral control of schistosomiasis. Schistosoma mansoni IrV-5, recommended as a vaccine candidate by the World Health Organization/Special Programme for Research and Training in Tropical Diseases, produced high protection in animal models. We therefore focused on its homolog, the Schistosoma japonicum 62 kDa antigen, and analyzed it using B cell/antibody- related databases and analysis tools for the prediction of B-cell epitopes. Epitope B3 was selected for further investigation. Experiments using a murine model indicated that mice immunized with B3 resulted in lymphocytes proliferation and produced high levels of specific immunoglobulin G and GI, but did not produce impressive cytokines. The vaccination showed partial protective immunity, measured by worm burden and anti-fecundity immunity against S. japonicum. These results indicated that the epitope B3 from S. japonicum 62-kDa antigen might act as a candidate immunogen for future epitope vaccine investigation.  相似文献   

18.
Foot-and-mouth disease virus (FMDV) belongs to thegenus Aphthovirus of the family Picornavidae. The FMDVgenome is a copy of positive-sense, single-stranded RNA,which contains one large open reading frame (ORF). TheORF is translated into a polypeptide, which undergoesautoproteolytic cleavage to produce the structural and non-structural proteins and ultimately forms mature viral pro-teins [1,2]. FMD is caused by the FMDV, which is a highly conta-gious vesicular disease of cloven-hoofe…  相似文献   

19.
BALB/c or C57Bl/6 mice immunized with plasmids containing Trypanosoma cruzi genes developed specific immune responses and protective immunity against lethal parasitic infection. In contrast, in the highly susceptible mouse strain A/Sn, DNA vaccination reduced the peak parasitemia but promoted limited mouse survival after challenge. In the present study, we tested whether the immunogenicity and protective efficacy of vaccination could be improved by combining DNA and recombinant protein immunization regimens. A/Sn mice immunized with plasmid p154/13 which harbours the gene encoding Trypanosoma cruzi trans-sialidase developed a predominant type 1 immune response. In contrast, immunization with the recombinant Trypanosoma cruzi trans-sialidase protein adsorbed to alum generated a typical type 2 immune response. Simultaneous administration of both p154/13 and recombinant Trypanosoma cruzi trans-sialidase protein also led to a predominant type 2 immune response. Sequential immunization consisting of two priming doses of p154/13 followed by booster injections with recombinant Trypanosoma cruzi trans-sialidase protein significantly improved specific type 1 immune response, as revealed by a drastic reduction of the serum IgG1/IgG2a ratio and by an increase in the in vitro interferon-gamma secretion by CD4 T cells. Our observations confirm and extend previous data showing that a DNA-priming protein-boosting regimen might be a general strategy to enhance type 1 immune response to DNA vaccines. Upon challenge with Trypanosoma cruzi, no improvement in protective immunity was observed in mice immunized with the DNA-priming protein-boosting regimen when compared to animals that received DNA only. Therefore, our results suggest that in this experimental model there is no correlation between the magnitude of type 1 immune response and protective immunity against Trypanosoma cruzi infection.  相似文献   

20.
为研究针对结核分枝杆菌潜伏感染的DNA疫苗,基于质粒A39构建了p-VAX1-Ag85B-Rv3425-Rv2029c-PPE26 (V569)质粒DNA,并对其免疫原性及保护性进行初步研究。免疫性评价试验共分6组:PBS、p-VAX1-Ag85B(A)、p-VAX1-Ag85B-Rv3425(A3)、A39、V569和BCG,采用左后腿肌内注射C57BL/6小鼠,用流式细胞术和酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)分别检测细胞免疫和体液免疫水平;构建斑马鱼-海分枝杆菌潜伏感染模型,将PBS、A、A3、A39、BCG、V569分别通过腹腔注射免疫斑马鱼后,每日注射地塞米松10ug诱导海分枝杆菌复发感染,对斑马鱼肝脏进行菌落计数并绘制生存曲线。结果显示,与BCG组相比,V569能引发实验小鼠强烈的细胞免疫反应(IFN-γ高水平分泌),外周血CD4/CD8 T细胞比例明显增加。在斑马鱼-海分枝杆菌潜伏感染复发模型中,与BCG 免疫组相比,V569免疫斑马鱼后可显著减少其肝脏中海分枝杆菌数量,斑马鱼存活情况得到显著改善,表明V569 DNA疫苗可能是一种抗结核潜伏感染的候选DNA疫苗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号