首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The core structure of HIV-1 gp41 is a stable six-helix bundle (6-HB) folded by its trimeric N- and C-terminal heptad repeats (NHR and CHR). We previously identified that the (621)QIWNNMT(627) motif located at the upstream region of gp41 CHR plays critical roles for the stabilization of the 6-HB core and peptide CP621-652 containing this motif is a potent HIV-1 fusion inhibitor, however, the molecular determinants underlying the stability and anti-HIV activity remained elusive. In this study, we determined the high-resolution crystal structure of CP621-652 complexed by T21. We find that the (621)QIWNNMT(627) motif does not maintain the α-helical conformation. Instead, residues Met(626) and Thr(627) form a unique hook-like structure (denoted as M-T hook), in which Thr(627) redirects the peptide chain to position Met(626) above the left side of the hydrophobic pocket on the NHR trimer. The side chain of Met(626) caps the hydrophobic pocket, stabilizing the interaction between the pocket and the pocket-binding domain. Our mutagenesis studies demonstrate that mutations of the M-T hook residues could completely abolish HIV-1 Env-mediated cell fusion and virus entry, and significantly destabilize the interaction of NHR and CHR peptides and reduce the anti-HIV activity of CP621-652. Our results identify an unusual structural feature that stabilizes the six-helix bundle, providing novel insights into the mechanisms of HIV-1 fusion and inhibition.  相似文献   

2.
Liu S  Lu H  Niu J  Xu Y  Wu S  Jiang S 《The Journal of biological chemistry》2005,280(12):11259-11273
Fuzeon (also known as T-20 or enfuvirtide), one of the C-peptides derived from the HIV-1 envelope glycoprotein transmembrane subunit gp41 C-terminal heptad repeat (CHR) region, is the first member of a new class of anti-HIV drugs known as HIV fusion inhibitors. It has been widely believed that T-20 shares the same mechanism of action with C34, another C-peptide. The C34 is known to compete with the CHR of gp41 to form a stable 6-helix bundle (6-HB) with the gp41 N-terminal heptad repeat (NHR) and prevent the formation of the fusogenic gp41 core between viral gp41 NHR and CHR, thereby inhibiting fusion between viral and target cell membranes. Here we present data to demonstrate that, contrary to this belief, T-20 cannot form stable 6-HB with N-peptides derived from the NHR region, nor can it inhibit the 6-HB formation of the fusogenic core. Instead, it may interact with N-peptides to form unstable or insoluble complexes. Our data suggest that T-20 has a different mechanism of action from C34. The interaction of T-20 with viral NHR region alone may not prevent the formation of the fusion active gp41 core. We also demonstrate that the T-20-mediated anti-HIV activity can be significantly abrogated by peptides derived from the membrane-spanning domain in gp41 and coreceptor binding site in gp120. These new findings imply that T-20 inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. Further elucidation of the mechanism of action of T-20 will provide new target(s) for development of novel HIV entry inhibitors.  相似文献   

3.
We previously identified a potent small-molecule human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, termed ADS-J1, and hypothesized that it mainly targeted the hydrophobic pocket in the gp41 N-terminal heptad repeat (NHR) trimer. However, this hypothesis has been challenged by the fact that ADS-J1 cannot induce drug-resistance mutation in the gp41 pocket region. Therefore, we show herein that HIV-1 mutants resistant to T2635, a peptide derived from the gp41 C-terminal heptad repeat (CHR) region with pocket-binding domain (PBD), were also resistant to ADS-J1. We also show that pseudoviruses with mutations at positions 64 and 67 in the gp41 pocket region were highly resistant to ADS-J1 and C34, another CHR-peptide with PBD, but relatively sensitive to T20, a CHR-peptide without PBD. ADS-J1 could effectively bind to N36Fd, a mimic of the gp41 NHR-trimer with pocket exposed, and block binding of C34 to N36Fd trimer to form six-helix bundle (6-HB). However, ADS-J1 was less effective in binding to N36Fd trimer with mutations in the gp41 pocket region, such as N36(Q64A)Fd, N36(Q64L)Fd, N36(A67G)Fd, N36(A67S)Fd, and N36(Q66R)Fd, as well as less effective in blocking 6-HB formation between C34 and these mutant N36Fd trimers. These results confirm that ADS-J1 mainly targets the pocket region in the HIV-1 gp41 NHR trimer and suggest that it could be used as a lead for developing small-molecule HIV fusion inhibitors and as a molecule probe for studying the mechanisms of gp41-mediated membrane fusion.  相似文献   

4.
X Wang  W Xiong  X Ma  M Wei  Y Chen  L Lu  AK Debnath  S Jiang  C Pan 《PloS one》2012,7(9):e44874
During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR) of gp41 interacts with the C-terminal heptad repeat (CHR) to form fusogenic six-helix bundle (6-HB) core. We previously identified a crucial residue for 6-HB formation and virus entry - Lys63 (K63) in the C-terminal region of NHR (aa 54-70), which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121) in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46), in the N-terminal region of NHR (aa 35-53), which forms a hydrogen bond with a polar residue, Asn43 (N43), in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137), in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A) or the negatively charged residue Glu (R46E) resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A) or Arg (E137R) also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.  相似文献   

5.
The fusion-active HIV-1 gp41 core structure is a stable six-helix bundle (6-HB) formed by its N- and C-terminal heptad-repeat sequences (NHR and CHR). A highly conserved, deep hydrophobic cavity on the surface of the N-helical trimer is important for stability of the 6-HB and serves as an ideal target for developing anti-human immunodeficiency virus (HIV) fusion inhibitors. We have recently identified several small molecule HIV-1 fusion inhibitors that bind to the gp41 cavity through hydrophobic and ionic interactions and block the gp41 6-HB formation. Molecular docking analysis reveals that these small molecules fit inside the hydrophobic cavity and interact with positively charged residue Lys574 to form a conserved salt bridge. In this study, the functionality of Lys574 has been finely characterized by mutational analysis and biophysical approaches. We found that substitutions of Lys574 with non-conserved residues (K574D, K574E, and K574V) could completely abolish virus infectivity. With a set of wild-type and mutant N36 peptides derived from the NHR sequence as a model, we demonstrated that non-conservative Lys574 substitutions severely impaired the stability and conformation of 6-HBs as detected by circular dichroism spectroscopy, native polyacrylamide gel electrophoresis, and enzyme-linked immunosorbent assay. The binding affinity of N36 mutants bearing non-conservative Lys574 substitutions to the peptide C34 derived from the CHR sequence dramatically decreased as measured by isothermal titration calorimetry. These substitutions also significantly reduced the potency of N-peptides to inhibit HIV-1 infection. Collectively, these data suggest that conserved Lys574 plays a critical role in 6-HB formation and HIV-1 infectivity, and may serve as an important target for designing anti-HIV drugs.  相似文献   

6.
Mutations on NHR (N-terminal heptad repeat) associated with resistance to fusion inhibitor were observed. In addition, mutations on CHR (C-terminal heptad repeat) accompanied NHR mutations of gp41 are noted in many cases, like N43D/S138A double mutation. In this work, we explored the drug resistant mechanism of N43D mutation and the role of S138A second mutation in drug resistance. The binding modes of the wild type gp41 and the two mutants, N43D and N43D/S138A, with the HIV-1 fusion inhibitor C34, a 34-residue peptide mimicking CHR of gp41, were carried out by using molecular dynamics simulations. Based on the MD simulations, N43D mutation affects not only the stability of C34 binding, but also the binding energy of the inhibitor C34. Because N43D mutation may also affect the stable conformation of 6-HB, we introduced S138A second mutation into CHR of gp41 and determined the impact of this mutation. Through the comparative analysis of MD results of the N43D mutant and the N43D/S138A mutant, we found that CHR with S138A mutation shown more favorable affinity to NHR. Compelling differences in structures have been observed for these two mutants, particularly in the binding modes and in the hydrophobic interactions of the CHR (C34) located near the hydrophobic groove of the NHR. Because the conformational stability of 6-HB is important to HIV-1 infection, we suggested a hypothetical mechanism for the drug resistance: N43D single mutation not only impact the binding of inhibitor, but also affect the affinity between NHR and CHR of gp41, thus may reduce the rate of membrane fusion; compensatory mutation S138A would induce greater hydrophobic interactions between NHR and CHR, and render the CHR more compatible to NHR than inhibitors.  相似文献   

7.
CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors.  相似文献   

8.
T20 (Fuzeon), a novel anti-human immunodeficiency virus (HIV) drug, is a peptide derived from HIV-1 gp41 C-terminal heptad repeat (CHR). Its mechanism of action has not yet been defined. We applied Pepscan strategy to determine the relationship between functional domains and mechanisms of action of five 36-mer overlapping peptides with a shift of five amino acids (aa): CHR-1 (aa 623-658), C36 (aa 628-663), CHR-3 (aa 633-668), T20 (aa 638-673), and CHR-5 (aa 643-678). C36 is a peptide with addition of two aa to the N terminus of C34. Peptides CHR-1 and C36 contain N-terminal heptad repeat (NHR)- and pocket-binding domains. They inhibited HIV-1 fusion by interacting with gp41 NHR, forming stable six-helix bundles and blocking gp41 core formation. Peptide T20 containing partial NHR- and lipid-binding domains, but lacking pocket-binding domain, blocked viral fusion by binding its N- and C-terminal sequences with gp41 NHR and cell membrane, respectively. Peptide CHR-3, which is located in the middle between C36 and T20, overlaps >86% of the sequences of these two peptides, and lacks pocket- and lipid-binding domains, exhibited marginal anti-HIV-1 activity. These results suggest that T20 and C36 contain different functional domains, through which they inhibit HIV-1 entry with distinct mechanisms of action. The multiple functional domains in gp41 CHR and their binding partners may serve as targets for rational design of new anti-HIV-1 drugs and vaccines.  相似文献   

9.
CP32M is a newly designed peptide fusion inhibitor possessing potent anti-HIV activity, especially against T20-resistant HIV-1 strains. In this study, we show that CP32M can efficiently inhibit a large panel of diverse HIV-1 variants, including subtype B', CRF07_BC, and CRF01_AE recombinants and naturally occurring or induced T20-resistant viruses. To elucidate its mechanism of action, we determined the crystal structure of CP32M complexed with its target sequence. Differing from its parental peptide, CP621-652, the (621)VEWNEMT(627) motif of CP32M folds into two α-helix turns at the N terminus of the pocket-binding domain, forming a novel layer in the six-helix bundle structure. Prominently, the residue Asn-624 of the (621)VEWNEMT(627) motif is engaged in the polar interaction with a hydrophilic ridge that borders the hydrophobic pocket on the N-terminal coiled coil. The original inhibitor design of CP32M provides several intra- and salt bridge/hydrogen bond interactions favoring the stability of the helical conformation of CP32M and its interactions with N-terminal heptad repeat (NHR) targets. We identified a novel salt bridge between Arg-557 on the NHR and Glu-648 of CP32M that is critical for the binding of CP32M and resistance against the inhibitor. Therefore, our data present important information for developing novel HIV-1 fusion inhibitors for clinical use.  相似文献   

10.
HIV-1 fusion with its target cells is mediated by the glycoprotein 41 (gp41) transmembrane subunit of the viral envelope glycoprotein (ENV). The current models propose that gp41 undergoes several conformational changes between the apposing viral and cell membranes to facilitate fusion. In this review we focus on the progress that has been made in revealing the dynamic role of the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions within gp41 to the fusion process. The involvement of these regions in the formation of the gp41 pre-hairpin and hairpin conformations during an ongoing fusion event was mainly discovered by their derived inhibitory peptides. For example, the core structure within the hairpin conformation in a dynamic fusion event is suggested to be larger than its high resolution structure and its minimal boundaries were determined in situ. Also, inhibitory peptides helped reveal the dual contribution of the NHR to the fusion process. Finally, we will also discuss several developments in peptide design that has led to a deeper understanding of the mechanism of viral membrane fusion.  相似文献   

11.
Yu X  Lu L  Cai L  Tong P  Tan S  Zou P  Meng F  Chen YH  Jiang S 《Journal of virology》2012,86(1):589-593
To prove that the peptidic HIV-1 fusion inhibitors containing the pocket-binding domain (PBD) mainly target the hydrophobic pocket in the gp41 N-terminal heptad repeat (NHR), we constructed pseudoviruses by replacement of Q64 in the gp41 pocket region with Ala (Q64A) or Leu (Q64L). These viruses were highly resistant to C34 and CP32M containing the PBD, while they were susceptible to T20 (enfuvirtide) lacking the PBD but containing the GIV-motif-binding domain (GBD) and lipid-binding domain (LBD). They were also sensitive to C52L, which contains the PBD, GBD, and LBD. Those mutations may disrupt the hydrophilic interaction between Q64 in the NHR and N113 in the peptides containing the PBD. This report provides insights into the mechanisms of drug resistance, with implications for the design of novel HIV fusion and entry inhibitors.  相似文献   

12.
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.  相似文献   

13.
Huang JH  Liu ZQ  Liu S  Jiang S  Chen YH 《FEBS letters》2006,580(20):4807-4814
The HIV-1 gp41 core, a six-helix bundle formed between the N- and C-terminal heptad repeats, plays a critical role in fusion between the viral and target cell membranes. Using N36(L8)C34 as a model of the gp41 core to screen phage display peptide libraries, we identified a common motif, HXXNPF (X is any of the 20 natural amino acid residues). A selected positive phage clone L7.8 specifically bound to N36(L8)C34 and this binding could be blocked by a gp41 core-specific monoclonal antibody (NC-1). JCH-4, a peptide containing HXXNPF motif, effectively inhibited HIV-1 envelope glycoprotein-mediated syncytium-formation. The epitope of JCH-4 was proven to be linear and might locate in the NHR regions of the gp41 core. These data suggest that HXXNPF motif may be a gp41 core-binding sequence and HXXNPF motif-containing molecules can be used as probes for studying the role of the HIV-1 gp41 core in membrane fusion process.  相似文献   

14.
《Journal of molecular biology》2019,431(17):3091-3106
Development of effective inhibitors of the fusion between HIV-1 and the host cell membrane mediated by gp41 continues to be a grand challenge due to an incomplete understanding of the molecular and mechanistic details of the fusion process. We previously developed single-chain, chimeric proteins (named covNHR) that accurately mimic the N-heptad repeat (NHR) region of gp41 in a highly stable coiled-coil conformation. These molecules bind strongly to peptides derived from the gp41 C-heptad repeat (CHR) and are potent and broad HIV-1 inhibitors. Here, we investigated two covNHR variants differing in two mutations, V10E and Q123R (equivalent to V38E and Q40R in gp41 sequence) that reproduce the effect of HIV-1 mutations associated with resistance to fusion inhibitors, such as T20 (enfuvirtide). A detailed calorimetric analysis of the binding between the covNHR proteins and CHR peptides (C34 and T20) reveals drastic changes in affinity due to the mutations as a result of local changes in interactions at the site of T20 resistance. The crystallographic structure of the covNHR:C34 complex shows a virtually identical CHR–NHR binding interface to that of the post-fusion structure of gp41 and underlines an important role of buried interfacial water molecules in binding affinity and in development of resistance against CHR peptides. Despite the great difference in affinity, both covNHR variants demonstrate strong inhibitory activity for a wide variety of HIV-1 strains. These properties support the high potential of these covNHR proteins as new potent HIV-1 inhibitors. Our results may guide future inhibition approaches.  相似文献   

15.
HIV entry is mediated by the envelope glycoproteins gp120 and gp41. The gp41 subunit contains several functional domains: the N-terminal heptad repeat (NHR) domains fold a triple stranded coiled-coil forming a meta-stable prefusion intermediate. C-terminal heptad repeat (CHR) subsequently folds onto the hydrophobic grooves of the NHR coiled-coil to form a stable 6-helix bundle, which juxtaposes the viral and cellular membranes for fusion. The C34 which has 34 amino acid residues is known as the core structure in CHR. A highly anti-HIV peptide inhibitor derived from C34 was designed. An artificial salt bridge was added in the 6-helical bundle by substitution of lysine for Ile646. With a cholesterol modification at C-terminal, the inhibitor containing I646K mutation represented higher anti-viral activity than C34–cholesterol combination without mutation.  相似文献   

16.
Binding of the human immunodeficiency virus (HIV) envelope glycoprotein (Env) to the cellular CD4 receptor and a chemokine coreceptor initiates a series of conformational changes in the Env subunits gp120 and gp41. Eventually, the trimeric gp41 folds into a six-helix bundle, thereby inducing fusion of the viral and cellular membranes. C peptides derived from the C-terminal heptad repeat (CHR) of gp41 are efficient entry inhibitors as they block the six-helix bundle formation. Previously, we developed a membrane-anchored C peptide (maC46) expressed from a retroviral vector that also shows high activity against virus strains resistant to enfuvirtide (T-20), an antiviral C peptide approved for clinical use. Here, we present a systematic analysis of mutations in Env that confer resistance of HIV type 1 (HIV-1) to maC46. We selected an HIV-1 BaL strain with 10-fold reduced sensitivity to maC46 (BaL_C46) by passaging virus for nearly 200 days in the presence of gradually increasing concentrations of maC46. In comparison to wild-type BaL, BaL_C46 had five mutations at highly conserved positions in Env, three in gp120, one in the N-terminal heptad-repeat (NHR), and one in the CHR of gp41. No mutations were found in the NHR domain around the GIV motif that are known to cause resistance to enfuvirtide. Instead, maC46 resistance was found to depend on complementary mutations in the NHR and CHR that considerably favor binding of the mutated NHR to the mutated CHR over binding to maC46. In addition, resistance was highly dependent on mutations in gp120 that accelerated entry. Taken together, resistance to maC46 did not develop readily and required multiple cooperating mutations at conserved positions of the viral envelope glycoproteins gp120 and gp41.The entry process of the human immunodeficiency virus type 1 (HIV-1) has become a major target for new antiviral drugs. Viral entry is initiated by binding of the HIV-1 envelope glycoprotein subunit gp120 to the CD4 receptor and a chemokine coreceptor, generally CCR5 or CXCR4. Upon coreceptor binding, the viral transmembrane subunit gp41 undergoes conformational changes that eventually lead to the formation of the six-helix bundle (6HB) and membrane fusion. The 6HB is composed of a central trimeric coiled-coil structure formed by the N-terminal heptad repeat (NHR) domains of three gp41 molecules and the corresponding C-terminal heptad repeats (CHRs) that pack into the longitudinal grooves on the surface of the NHR coiled-coil in an antiparallel orientation (23). C-peptide fusion inhibitors (CFI) derived from the CHR of gp41 compete with the viral CHR for binding to the NHR trimer, thus blocking 6HB formation and viral entry (18).T-20 (enfuvirtide) is the first clinically approved CFI with high antiviral activity and a low-toxicity profile. However, as with many anti-HIV-1 drugs, resistance can emerge rapidly (13). The majority of the resistance mutations are found in the NHR of gp41 among the amino acids 544 to 553 (32, 35) (numbering refers to gp160 of the HIV-1 HXB2 strain throughout the article). Most of these mutations cause resistance by reducing the affinity of the NHR target region to inhibitory C peptides (13). Additionally, viral entry kinetics were found to correlate with the baseline susceptibility of different HIV strains to CFI. Determinants for viral entry kinetics are found in gp41 as well as in gp120 (1, 14, 35). Here, the influence of coreceptor affinity on virus entry kinetics and CFI susceptibility has been studied extensively (28, 30, 31). Recently, a statistical approach was used that highlighted positions in gp120 that underwent mutations in patients under enfuvirtide treatment (38). However, to our knowledge, selected CFI resistance mutations outside of gp41 have never been confirmed experimentally.Previously, we developed a retroviral vector expressing a membrane-anchored antiviral C peptide (maC46) that efficiently inhibits a broad range of different HIV-1 isolates. Enfuvirtide-resistant HIV-1 strains with mutations in the GIV motif of NHR were fully susceptible to maC46 (10). In the present study, we selected an HIV-1 variant with reduced sensitivity to maC46 by passaging an enfuvirtide-resistant BaL strain of HIV-1 on cells expressing increasing concentrations of maC46. Mutations in gp120 and gp41 were found to contribute to maC46 resistance.  相似文献   

17.
Sackett K  Shai Y 《Biochemistry》2002,41(14):4678-4685
For many different enveloped viruses the crystal structure of the fusion protein core has been established. A striking conservation in the tertiary and quaternary arrangement of these core structures is repeatedly revealed among members of diverse families. It has been proposed that the primary role of the core involves structural rearrangements which facilitate apposition between viral and target cell membranes. Forming the internal trimeric coiled coil of the core, the N-terminal heptad repeat (NHR) of HIV-1 gp41 was suggested to have additional roles, due to its ability to bind biological membranes. The NHR is adjacent to the N-terminal hydrophobic fusion peptide (FP), which alone can fuse biological membranes. To investigate the role of the NHR in membrane fusion, we synthesized and functionally characterized HIV-1 gp41 peptides corresponding to the FP and NHR alone, as well as continuous peptides made of both FP and NHR (wild type and mutant). We show here that a consecutive, 70-residue peptide consisting of both the FP and NHR (gp41/1-70) has dramatic fusogenic properties. The effect of including the complete NHR, as compared to shorter 23-, 33-, or 52-residue N-terminal peptides, is illustrated by a leap in lipid mixing of phosphatidylcholine (PC) large unilamellar vesicles (LUV) and clearly delineates the synergistic role of the NHR in the fusion event. Furthermore, a mutation in the NHR that renders the virus noninfectious is reflected by a significant reduction in in vitro lipid mixing induced by the mutant, gp41/1-70 (I62D). Additional spectroscopic studies, characterizing membrane binding and apposition induced by the peptides, help to clarify the role of the NHR in membrane fusion.  相似文献   

18.
Shu W  Liu J  Ji H  Radigen L  Jiang S  Lu M 《Biochemistry》2000,39(7):1634-1642
The HIV-1 gp41 envelope protein mediates membrane fusion that leads to virus entry into the cell. The core structure of fusion-active gp41 is a six-helix bundle in which an N-terminal three-stranded coiled coil is surrounded by a sheath of antiparallel C-terminal helices. A conserved glutamine (Gln 652) buried in this helical interface replaced by leucine increases HIV-1 infectivity. To define the basis for this enhanced membrane fusion activity, we investigate the role of the Gln 652 to Leu substitution on the conformation, stability, and biological activity of the N34(L6)C28 model of the gp41 ectodomain core. The 2.0 A resolution crystal structure of the mutant molecule shows that the Leu 652 side chains make prominent contacts with hydrophobic grooves on the surface of the central coiled coil. The Gln 652 to Leu mutation leads to a marginal stabilization of the six-helix bundle by -0.8 kcal/mol, evaluated from thermal unfolding experiments. Strikingly, the mutant N34(L6)C28 peptide is a potent inhibitor of HIV-1 infection, with 10-fold greater activity than the wild-type molecule. This inhibitory potency can be traced to the corresponding C-terminal mutant peptide that likely has greater potential to interact with the coiled-coil trimer. These results provide strong evidence that conserved interhelical packing interactions in the gp41 core are important determinants of HIV-1 entry and its inhibition. These interactions also offer a test-bed for the development of more potent analogues of gp41 peptide inhibitors.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes about 2 million people to death every year. Fusion inhibitors targeted the envelope protein (gp41) represent a novel and alternative approach for anti-AIDS therapy, which terminates the HIV-1 life cycle at an early stage. Using CP621-652 as a template, a series of peptides were designed, synthesized and evaluated in vitro assays. An interesting phenomenon was found that the substitution of hydrophobic residues at solvent accessible sites could increase the anti-HIV activity when the C-terminal sequence was extended with an enough numbers of amino acids. After the active peptides was synthesized and evaluated, peptide 8 showed the best anti-HIV-1 IIIB whole cell activity (MAGI IC50 = 53.02 nM). Further study indicated that peptide 8 bound with the gp41 NHR helix, and then blocked the conformation of 6-helix, thus inhibited virus–cell membrane fusion. The results would be helpful for the design of peptide fusion inhibitors against HIV-1 infection.  相似文献   

20.
HIV-1 entry into its host cell involves a sequential interaction whereby gp41 is in direct contact with the plasma membrane. Understanding the effect of membrane composition on the fusion mechanism can shed light on the unsolved phases of this complex mechanism. Here, we studied N36, a peptide derived from the N-heptad-repeat (NHR) of the gp41 ectodomain, its six helix bundle (SHB) forming counterpart C34, together with the N-terminal 70-mer wild-type peptide (N70), and additional gp41 ectodomain-derived peptides in the presence of two membranes, modeling inner and outer leaflets of the plasma membrane. Information on the structure of these peptides, their affinity towards phospholipids and their ability to induce vesicle fusion was gathered by a variety of fluorescence, spectroscopic and microscopy methods. We found that N36, having strong affinity towards phospholipids, prominently shifts conformation from alpha-helix in an outer leaflet-like zwitterionic membrane to beta-sheet in a membrane mimicking the negatively charged inner leaflet environment, leading to pronounced fusion-activity. Real-time atomic force microscopy (AFM) was used to study the peptides' effect on the membrane morphology, revealing severe bilayer perturbation and extensive pore formation.We also found, that the N36/C34 core is destabilized by electronegative, but not zwitterionic phospholipids. Taken together, our data suggest that the fusion-active pore forming conformation of gp41 is extended, upstream of the SHB. In this manner, folding of the ectodomain into a SHB might also serve as a negative regulator of fusion by impeding gp41 fusion-active surfaces, thus preventing irreversible damage to the cell membrane. This assumption is supported by the finding that pre-incubation of large unilamellar vesicles (LUV) with C-heptad repeat (CHR)-derived fusion inhibitors reduces the fusogenic activity of N-terminal peptides in a dose-dependant manner, and suggests that CHR-derived fusion inhibitors inhibit HIV entry in an analogous mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号