首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   28篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   11篇
  2011年   12篇
  2010年   12篇
  2009年   10篇
  2008年   17篇
  2007年   15篇
  2006年   14篇
  2005年   8篇
  2004年   13篇
  2003年   16篇
  2002年   10篇
  2001年   15篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   10篇
  1987年   10篇
  1986年   9篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   9篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   7篇
  1973年   6篇
  1972年   3篇
  1969年   1篇
  1968年   3篇
排序方式: 共有358条查询结果,搜索用时 62 毫秒
1.
Norleucine is a structural analog of methionine with a methylene group replacing the thio ether. Despite the close structural similarity of these two amino acids, norleucine-containing peptides have markedly different behaviour with phospholipids compared with methionine-containing peptides. For example, HCO-L-Ahx-L-Leu-L-Phe-OMe behaves as a hydrophobic peptide when mixed with dimyristoylphosphatidylcholine. This peptide lowers the enthalpy of the lipid phase transition. The effect is independent of the rate of heating. With the homologous peptide, HCO-L-Met-L-Leu-L-Phe-OMe, the results are markedly dependent on scan rate with a higher enthalpy observed at faster scan rates. Only at a scan rate of 0.2 K min-1 do the two peptides approach similar behaviour. The higher enthalpy observed for samples with the methionine peptide at higher scan rates can be explained assuming that the peptide aggregates at low temperature. As the phase transition temperature is approached, the more hydrophilic methionine peptide partitions more slowly into the membrane than the norleucine peptide. Partitioning of the peptides between aqueous and lipid phases was measured at 37 degrees by centrifuging down the lipid-bound fraction. At a peptide concentration of 15 microM and a lipid concentration of 1.4 mM, 89% of the HCO-L-Ahx-L-Leu-L-PheOMe and 97% of the HCO-L-Met-L-Leu-L-PheOMe remained in the supernate; indicating a greater tendency of the norleucine-containing peptide to partition into the lipid phase. The peptides Ac-L-Phe-L-Met-L-Arg-L-Phe-NH2 and Ac-L-Phe-L-Ahx-L-Arg-L-Phe-NH2 are readily soluble in water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Nalpha-Trinitrophenyl glucagon was prepared by reaction with trinitrobenzene sulfonic acid and purified by ion-exchange chromatography. This derivative has essentially no ability to activate adenylate cyclase from rat liver nor to increase the levels of cyclic AMP in isolated hepatocytes nor to stimulate protein kinase activity. This derivative also can act as a glucagon antagonist with regard to cyclic AMP production and can decrease the degree of stimulation of adenylate cyclase caused by glucagon, as well as lowering the glucagon-stimulated elevation of cyclic AMP levels in intact hepatocytes. Nevertheless, this derivative is capable of activating glycogenolysis in isolated hepatocytes and in augmenting the effect of glucagon on glycogenolysis. This metabolic effect of the glucagon derivative thus appears to occur independent of changes in cyclic AMP levels. These results suggest that glucagon can also activate glycogenolysis by a cyclic AM-independent process.  相似文献   
3.
The interaction of the polypeptide hormone calcitonin with two acidic phospholipids, dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA), was investigated by Fourier-transform infrared spectroscopy. The association of calcitonin with DMPG results in a broadening of the lipid phase transition, accompanied by a marked decrease in the conformational order of the acyl chains at temperatures below the phase transition region. Infrared bands due to carbonyl ester and phosphate group vibrations of DMPG molecules are not significantly affected by the presence of calcitonin. The effect of calcitonin on the conformation of acyl chains in DMPA is much smaller compared with DMPG. The different susceptibility of DMPG and DMPA to perturbation by calcitonin is suggested to be related to different degrees of intermolecular interactions between the headgroups of these two phospholipids.  相似文献   
4.

Background

Morphological and functional differences of the right and left ventricle are apparent in the adult human heart. A differential contribution of cardiac fibroblasts and smooth muscle cells (populations of epicardium-derived cells) to each ventricle may account for part of the morphological-functional disparity. Here we studied the relation between epicardial derivatives and the development of compact ventricular myocardium.

Results

Wildtype and Wt1CreERT2/+ reporter mice were used to study WT-1 expressing cells, and Tcf21lacZ/+ reporter mice and PDGFRα-/-;Tcf21LacZ/+ mice to study the formation of the cardiac fibroblast population. After covering the heart, intramyocardial WT-1+ cells were first observed at the inner curvature, the right ventricular postero-lateral wall and left ventricular apical wall. Later, WT-1+ cells were present in the walls of both ventricles, but significantly more pronounced in the left ventricle. Tcf21-LacZ + cells followed the same distribution pattern as WT-1+ cells but at later stages, indicating a timing difference between these cell populations. Within the right ventricle, WT-1+ and Tcf21-lacZ+ cell distribution was more pronounced in the posterior inlet part. A gradual increase in myocardial wall thickness was observed early in the left ventricle and at later stages in the right ventricle. PDGFRα-/-;Tcf21LacZ/+ mice showed deficient epicardium, diminished number of Tcf21-LacZ + cells and reduced ventricular compaction.

Conclusions

During normal heart development, spatio-temporal differences in contribution of WT-1 and Tcf21-LacZ + cells to right versus left ventricular myocardium occur parallel to myocardial thickening. These findings may relate to lateralized differences in ventricular (patho)morphology in humans.  相似文献   
5.
6.
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.  相似文献   
7.
The mammalian diacylglycerol kinases (DGK) are a group of enzymes having important roles in regulating many biological processes. Both the product and the substrate of these enzymes, i.e. diacylglycerol and phosphatidic acid, are important lipid signalling molecules. Each DGK isoform appears to have a distinct biological function as a consequence of its location in the cell and/or the proteins with which it associates. This review discusses three of the more extensively studied forms of this enzyme, DGKα, DGK?, and DGKζ. DGKα has an important role in immune function and its activity is modulated by several mechanisms. DGK? has several unique features among which is its specificity for arachionoyl-containing substrates, suggesting its importance in phosphatidylinositol cycling. DGKζ is expressed in many tissues and also has several mechanisms to regulate its functions. It is localized in several subcellular organelles, including the nucleus. The current state of our understanding of the properties and functions of these proteins is reviewed.  相似文献   
8.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   
9.
The oligo-acyl-lysyl, C12(ω7)K-β12, is comprised of only three Lys residues. Despite its small size, it exhibits potent bacteriostatic activity against Gram-positive bacteria, but it is ∼10-fold less potent against Gram-negative bacteria. We followed the interactions of C12(ω7)K-β12 from its initial contact with the bacterial surface across the cell wall down to the cytoplasmic membrane. Binding to anionic lipids, as well as to negatively charged LPS and LTA, occurs with very high affinity. The C12(ω7)K-β12 does not cross the outer membrane of Gram-negative bacteria; rather, it achieves its action by depositing on the LPS layer, promoting surface adhesion and blocking passage of solutes. In Gram-positive bacteria, the thick peptidoglycan layer containing LTA allows passage of C12(ω7)K-β12 and promotes its accumulation in the small periplasm. From that location it is then driven to the membrane by strong electrostatic interactions. Despite its high potency against Gram-positive bacteria, this agent is not capable of efficiently breaking down the permeability barrier of the cytoplasmic membrane or of reaching an intracellular target, as suggested by the fact that it does not interact with DNA.  相似文献   
10.

Background  

Questions regarding the distribution of stress in the proximal human femur have never been adequately resolved. Traditionally, by considering the femur in isolation, it has been believed that the effect of body weight on the projecting neck and head places the superior aspect of the neck in tension. A minority view has proposed that this region is in compression because of muscular forces pulling the femur into the pelvis. Little has been done to study stress distributions in the proximal femur. We hypothesise that under physiological loading the majority of the proximal femur is in compression and that the internal trabecular structure functions as an arch, transferring compressive stresses to the femoral shaft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号