首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Summary Four of 1,240 cultivated barley lines collected from different regions of the world and 3 of 120 lines of wild barley, Hordeum spontaneum C. Koch, carry spontaneous reciprocal translocations. Break-point positions and rearrangements in the interchanged chromosomes have been examined by both test crosses and Giemsa banding techniques. The four translocation lines in cultivated barley were all of Ethiopian origin and have the same translocation involving chromosomes 2 and 4. The breakpoints are at the centromeres of both chromosomes, resulting in interchanged chromosomes 2S+4S and 2L+4L (S=short arm, L=long arm). A wild barley line, Spont.II, also has translocated chromosomes 2 and 4 which are broken at the centromeres. The resultant chromosomes are, however, 2S+4L and 2L+4S. Another wild barley line, Spont.S-4, has interchanged chromosomes with breakpoints in the short arm of chromosome 3 and the long arm of chromosome 7. In addition, this line has a paracentric inversion in the short arm of chromosome 7 that includes a part of nucleolar constriction, resulting in two tandemly arranged nucleolar constrictions. The third wild barley line, Spont.S-7, has interchanged chromosomes with breakpoints in the long arms of both chromosomes 3 and 6. The translocated chromosome 3 is metacentric and the translocated chromosome 6 has a long arm similar in length to the long arm of chromosome 7.  相似文献   

2.
Koo DH  Hur Y  Jin DC  Bang JW 《Molecules and cells》2002,13(3):413-418
An intensive karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) was carried out with three different methods. These included Feulgen staining, Giemsa C-banding, and fluorescence in situ hybridization (FISH). The mitotic chromosomes of the cucumber (2n = 2x = 14) were characterized, based on the length and arm ratio values. A C-banding analysis showed dark stains on the centromeric, telomeric, and intercalary regions of the chromosomes, except that chromosome 2 had a heavy staining in the long arm. Bicolor FISH, using 45S and 5S rDNA probes, provided additional information to identify cucumber chromosomes. The signals for 45S rDNA were detected on the pericentromeric regions of chromosomes 1, 2, and 4. The signals for 5S rDNA were on the short arm of chromosome 5. Similar band patterns (as the C-banding) were observed when the chromosomes were counter-stained with 4',6-diamidino-2-phenyoindole (DAPI). The data implied that the karyotype of the Korean cucumber cultivar is peculiar and different from previous reports.  相似文献   

3.
The chromosomes of the Asian mice, Mus fulvidiventris (booduga?), are typical of the Mus in general, viz., 40 telocentric chromosomes. The centromeric heterochromatin does not fluoresce brightly. The G band pattern of the euchromatin is the same as that of M. musculus. The diploid number of M. dunni is also 40, but each autosome possesses a short, heterochromatic second arm. The X chromosome is a long submetacentric, whose entire short arm and the terminal segment of the long arm are heterochromatic. The Y is a long telocentric and is heterochromatic. The G band pattern of the long arms of M. dunni involved only the addition of C bands. Mus dunni and M. booduga are sympatric in many localities in India, but they can be separated by karyological and subtle morphological differences.  相似文献   

4.
The 5S ribosomal RNA genes were mapped to mitotic chromosomes of Arabidopsis thaliana by fluorescence in situ hybridization (FISH). In the ecotype Landsberg erecta, hybridization signals appeared on three pairs of chromosomes, two of which were metacentric and the other acrocentric. Hybridization signals on one pair of metacentric chromosomes were much stronger than those on the acrocentric and the other pair of metacentric chromosomes, probably reflecting the number of copies of the genes on the chromosomes. Other ecotypes, Columbia and Wassilewskija, had similar chromosomal distribution of the genes, but the hybridization signals on one pair of metacentric chromosomes were very weak, and detectable only in chromosomes prepared from young flower buds. The chromosomes and arms carrying the 5S rDNA were identified by multi-color FISH with cosmid clones and a centromeric 180 bp repeat as co-probes. The metacentric chromosome 5 and its L arm carries the largest cluster of the genes, and the short arm of acrocentric chromosome 4 carries a small cluster in all three ecotypes. Chromosome 3 had another small cluster of 5S rRNA genes on its L arm. Chromosomes 1 and 2 had no 5S rDNA cluster, but they are morphologically distinguishable; chromosome 1 is metacentric and 2 acrocentric. Using the 5S rDNA as a probe, therefore, all chromosomes of A. thaliana could be identified by FISH. Chromosome 1 is large and metacentric; chromosome 2 is acrocentric carrying 18S-5.8S-25S rDNA clusters on its short arm; chromosome 3 is metacentric carrying a small cluster of 5S rDNA genes on its L arm; chromosome 4 is acrocentric carrying both 18S-5.8S-25S and 5S rDNAs on its short (L) arm; and chromosome 5 is metacentric carrying a large cluster of 5S rDNA on its L arm.  相似文献   

5.
Karyotypes of Tago's brown frog Rana tagoi from the Chausu mountains in Minamishinshu of Nagano Prefecture were examined by conventional Giemsa staining, C-banding and late replication (LR)-banding. Chromosome number was 2n = 28 in all cases. The 28 chromosomes consisted of four pairs (1-4) of large biarmed chromosomes, two pairs (5-6) of telocentric chromosomes and eight pairs (7-14) of small biarmed chromosomes. Chromosome pair 11 had a secondary constriction on the long arm. In females, the C-band on the long arm of chromosome pair 6 was detected in both homologs, but was absent from the arms of the homologs of chromosome pairs 5 and 9. In males, C-bands were found in the long arms of both homologs of chromosome pairs 5 and 6, were present only in one homolog of chromosome pair 5 for certain male specimens and found in only one homolog of chromosome pair 9. Specimens of R. tagoi (2n = 28) should thus have two pairs of telocentric chromosomes to provide the same number of chromosome arms, these originating quite likely from chromosome pair 1 in the 26-chromosome specimens by centric fission. Heteromorphic sex chromosomes of the XX-XY type in R. tagoi (2n = 28) in the Chausu mountains were identified. Karyotypes of tail-tip cells from a hybrid tadpole between female R. tagoi (2n = 26) from the Hinohara village in Tokyo and male R. tagoi (2n = 28) from the Chausu mountain population were examined by squash preparation. Chromosome number was 2n = 27 in all tadpoles. The 27 chromosomes consisted of one chromosome set of R. tagoi (2n = 28) and one of R. tagoi (2n = 26).  相似文献   

6.
The C-banding pattern for the karyotype of Paragonimus ohirai representing individuals in a new population is reported. The short arm of chromosome 4 consisted of a large pericentromeric proximal C-band block and euchromatic tip. This pattern has not been observed previously and is designated as type E. Other new observations were: chromosome 5 was composed of pericentromeric heterochromatin, a lightly stained intercalary band at the middle portion of the short arm, and a lightly stained interstitial band at the terminal region of the long arm. Chromosome 7 consisted of pericentromeric heterochromatin and a lightly stained telomeric band at the short arm.  相似文献   

7.
Using the fluorescence in situ hybridization (FISH) technique, we conducted karyotype analyses to identify the lost chromosomes in three somaclonal variants obtained from tissue culture of wildAllium tuberosum (2n = 4X = 32). The three lost chromosomes of the At29 variant (2n = 29) were all chromosome 2, the two for At30 (2n = 30) were chromosomes 7 and 8, and At31 was missing chromosome 2. Chromosome compositions of these variants were confirmed as being fixed lines during two years of greenhouse cultivation. The bicolor FISH technique, involving both 5S and 18S–5.8S–26S ribosomal RNA genes as probes, was used to assign chromosomal locations and to confirm whether the lost chromosomes contained any rRNA markers. The 5S rRNA gene signals in all variants as well as the wild type were detected as two sets, one on the intercalary region of the short arm of chromosome 3, the other on the intercalary region of the long arm of chromosome 6. One 18S–5.8S–26S rRNA gene site on the secondary constriction included a flanking satellite and terminal region on the short arm of chromosome 8. Signals of the 18S–5.8S–26S rRNA gene in At30 showpd in only three chromosomes, indicating that one of the lost chromosomes was chromosome 8. Overall, three marker chromosomes were established by FISH, using rRNA multigene families.  相似文献   

8.
以Giemsa C带技术处理串叶松香草根尖细胞染色体(2n=14),全部着丝点及第5和第7对染色体短臂端部显稳定的C带,第6对染色体长臂有两条明显的居间带,其他居间带小而不稳定(重复率不高)。间期细胞核染色体呈Rable构型,其着丝点一极最多出现20个染色中心。统计分析表明,靠近着丝点的短臂端带区和居间带区异染色质有易与着丝点区异染色质融合的倾向。分裂中期Giemsa C带数目与间期染色中心数目存在数量对应关系。  相似文献   

9.
缪建吾 《昆虫学报》1988,(2):176-183
本文描述了我国疟疾媒介嗜人按蚊(Anopheles anthropophagus)的唾腺染色体图。此蚊的唾腺染色体由五个臂组成。第1号染色体为性染色体,又称X-染色体,是近端着丝粒,只有一个臂,它是各臂中最短的,此臂分为5个区;第2号染色体是中心着丝粒,左、右臂约等长,两臂共分为16个区;第3号染色体为亚中心着丝粒,右臂是各臂中最长的,左臂则是常染色体中最短的,两臂共分为18个区。  相似文献   

10.
Meiotic drive in Aedes aegypti (L.) is shown by a Giemsa C-banding technique to be associated with preferential isochromatid breakage of the X chromosome during male meiosis. These breaks remain open at least until anaphase-I and, since the range of cells affected is proportional to the sensitivity of the X chromosome to the Distorter gene, it is argued that they are directly related to the decreased number of spermatozoa found in distorting males. This reduction is considered to be attributable to the degeneration of more X- than Y-bearing spermatids but it is probable that some non-functional X-bearing spermatozoa are also produced. Chromosome breakage is almost completely confined to four sites, two adjacent to the centromere, one just proximal to the intercalary band and another about the centre of the unbanded arm. Although the first three of these lie within a region in which crossing-over does not take place, fragmentation occurs more frequently in a chiasmate arm than in one devoid of chromatid exchange.  相似文献   

11.
Summary Chromosome studies were carried out on normal individuals from three generations of one family with a 14p+ chromosome. The short arm of the 14p+ chromosome stained well using Giemsa but poorly using quinacrine or trypsin-Giemsa methods; in each case there was an unstained secondary constriction near the distal end of the short arm. Two Ag bands of average size were present on the 14p+ short arm, indicating that there were two active nucleolus organizer regions; the Ag band near the distal end of the short arm was slightly larger than that near the centromere. Each of the two Ag bands was seen associated with the short arm of one or more of the other acrocentric chromosomes, with a combined frequency of association no greater than that of other chromosomes with an Ag band of the same size. In one individual, hybridization in situ with radioactive 18S and 28S ribosomal RNA showed six times as many autoradiographic silver grains over the short arm of the 14p+ chromosome as over that of any other acrocentric chromosome. The results obtained using in situ labeling indicated that the 14p+ chromosome had a large number of rRNA genes compared with the other acrocentric chromosomes, whereas the results obtained using Ag-staining and association frequency indicated that the 14p+ chromosome had no greater nucleolus organizer activity than did the other acrocentrics. The difference in these findings suggests that not all the rRNA genes on the 14p+ chromosome were active.  相似文献   

12.
A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci.  相似文献   

13.
It has been proposed that the genera Zebrina and Setcreasea of the family Commelinaceae should be united and reunited, respectively, with the genus Tradescantia, mainly based on morphological studies. In the present study, karyotypes and Giemsa C-banding patterns in the root-tip cells of three Zebrina and two Setcreasea clones were analyzed, and were compared with those of a triploid Tradescantia clone. Z. pendula and Z. purpusii (both 2n = 24) were found to have similar karyotypes (4 M + 6 ST + 14 T; M = meta-, ST = subtelo-, T = telocentric chromosomes), while Z. pendula cv Quadricolor (2n = 23) had a unique karyotype (6 M + 5 ST + 11 T + 1 SA; SA = short acrocentric chromosome). The only clear difference between Z. pendula and Z. purpusii was that one and two subtelocentric chromosomes, respectively, had satellites at the short arms. Two clones of S. purpurea (2n = 24) had karyotypes (8 M + 8 M' + 8 SM; M' = nearly meta-, SM = submetacentric chromosomes) similar to each other. T. ohiensis (2n = 18) had a symmetric karyotype (9 M + 9 SM) consisting of larger chromosomes than S. purpurea. Many clear Giemsa C-bands were detected, in addition to centromeric bands in all chromosomes of all clones. Z. pendula and Z. purpusii commonly had single clear interstitial bands in eight telocentric chromosomes each, but they also had unique telomeric and other interstitial bands, respectively. Z. pendula cv Quadricolor had a unique banding pattern, i.e., satellite bands in the unique short chromosome, telomeric bands at the long arms of all metacentric chromosomes, and single interstitial bands in six telocentric chromosomes. Two clones of S. purpurea had telomeric bands at many chromosome arms and satellite bands in two nearly metacentric and one submetacentric chromosomes, but some differences were found between them. On the other hand, all the chromosomes of T. ohiensis had telomeric bands at both arms, and three submetacentric chromosomes had satellite bands. These result prove structural differentiation of chromosomes occurred among the clones, especially in Zebrina, and show that S. purpurea is relatively close to T. ohiensis, while Zebrina is obviously distant from the other two genera. Therefore, there remains a question cytologically at least for uniting Zebrina with Tradescantia.  相似文献   

14.
首次在国内对兴义维蚋Simulium (Wilhelmia) xingyiense的多线染色体进行研究, 并提供其多线染色体标准图。选取兴义维蚋的成熟幼虫, 用改良苯酚品红染色法进行唾腺多线染色体制备, 并进行测量、 描述及分析。结果表明: 兴义维蚋多线染色体数目为3对(2n=6)。Ⅰ号染色体具中央着丝粒, Ⅱ和Ⅲ号染色体均为亚中央着丝粒染色体。核仁组织者区位于Ⅰ号染色体短臂近着丝粒端。巴尔比尼氏环和双泡位于Ⅱ号染色体短臂近中央位置。3对染色体的着丝粒区可形成明显的染色中心。兴义维蚋多线染色体具有多态性的倒位, 倒位频率为0.64。兴义维蚋多线染色体的着丝粒、 核仁组织区、 巴氏环、 双泡等主要特征性结构的位置及形态恒定一致,可作为该种的重要鉴别特征。其多态性的倒位可为该蚋种在细胞水平上进行蚋类分类鉴别和系统发育等研究提供基础资料。  相似文献   

15.
Summary A new reconstructed barley karyotype, PK88, which is a quadruple homozygote for three unequal translocations, 1–2, 3–4, 5–7, and one pericentric inversion in chromosome 6, was studied. As a result of these chromosome rearrangements, a complete cytological marking of the complement has been achieved. Due to the specific intra or interchromosomal transfer of particular bands, Giemsa staining of somatic chromosomes provided clear-cut indications about the localization of translocation and inversion breakpoints. It was established that the long arms of chromosomes 1, 2, 4, 5 and 7 and the short arm of chromosome 3 have been involved in interchanges 1–2, 3–4, and 5–7. The breakpoints of pericentric inversion proved to be located proximally to the short (satellite) arm and distally in the long arm of chromosome 6. PK-88 offers an essential gain in resolution power and extension of the areas of application in cytogenetics over other reconstructed karyotypes produced so far in barley.  相似文献   

16.
An alloplasmic wheat line carrying a zebra chromosome z5A was isolated from the derivatives of an Elymus trachycaulus x Triticum aestivum cv Chinese Spring hybrid. Chromosome z5A was named zebra because of its striped genomic in situ hybridization pattern. z5A consists of four chromosome segments derived from E. trachycaulus and four chromosome segments, including the centromere, from wheat. The short arm of z5A paired with the telocentric chromosome 1HtS of E. trachycaulus and the long arm with the long arm of normal 5A. z5A also carried several genetic markers derived from 1HtS. Chromosome 1Ht was the only E. trachycaulus chromosome found in the sib plants of a previous generation from which z5A was derived. Monosomic 5A and telocentric chromosome 5AL were also found in most of the sib plants. The zebra chromosome most probably originated from spontaneous multiple translocations between chromosomes 5A and 1HtS or 5A and 1Ht.  相似文献   

17.
Individual plants from the BC1F5 and BC1F6 backcross progenies of barley--wheat (= H. geniculatum All.) (2n = 28) x T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H'L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found.  相似文献   

18.
A spontaneous interspecific Robertsonian translocation was revealed by genomic in situ hybridization (GISH) in the progenies of a monosomic 7H addition line originating from a new wheat 'Asakaze komugi' × barley 'Manas' hybrid. Fluorescence in situ hybridization (FISH) with repetitive DNA sequences (Afa family, pSc119.2, and pTa71) allowed identification of all wheat chromosomes, including wheat chromosome arm 4BS involved in the translocation. FISH using barley telomere- and centromere-specific repetitive DNA probes (HvT01 and (AGGGAG)(n)) confirmed that one of the arms of barley chromosome 7H was involved in the translocation. Simple sequence repeat (SSR) markers specific to the long (L) and short (S) arms of barley chromosome 7H identified the translocated chromosome segment as 7HL. Further analysis of the translocation chromosome clarified the physical position of genetically mapped SSRs within 7H, with a special focus on its centromeric region. The presence of the HvCslF6 gene, responsible for (1,3;1,4)-β-D-glucan production, was revealed in the centromeric region of 7HL. An increased (1,3;1,4)-β-D-glucan level was also detected in the translocation line, demonstrating that the HvCslF6 gene is of potential relevance for the manipulation of wheat (1,3;1,4)-β-D-glucan levels.  相似文献   

19.
Detailed karyotypes of Lilium longiflorum and L. rubellum were constructed on the basis of chromosome arm lengths, C-banding, AgNO3 staining, and PI-DAPI banding, together with fluorescence in situ hybridisation (FISH) with the 5S and 45S rDNA sequences as probes. The C-banding patterns that were obtained with the standard BSG technique revealed only few minor bands on heterologous positions of the L. longiflorum and L. rubellum chromosomes. FISH of the 5S and 45S rDNA probes on L. longiflorum metaphase complements showed overlapping signals at proximal positions of the short arms of chromosomes 4 and 7, a single 5S rDNA signal on the secondary constriction of chromosome 3, and one 45S rDNA signal adjacent to the 5S rDNA signal on the subdistal part of the long arm of chromosome 3. In L. rubellum, we observed co-localisation of the 5S and 45S rDNA sequences on the short arm of chromosomes 2 and 4 and on the long arms of chromosomes 2 and 3, and two adjacent bands on chromosome 12. Silver staining (Ag-NOR) of the nucleoli and NORs in L. longiflorum and L. rubellum yielded a highly variable number of signals in interphase nuclei and only a few faint silver deposits on the NORs of mitotic metaphase chromosomes. In preparations stained with PI and DAPI, we observed both red- and blue-fluorescing bands at different positions on the L. longiflorum and L. rubellum chromosomes. The red-fluorescing or so-called reverse PI-DAPI bands always coincided with rDNA sites, whereas the blue-fluorescing DAPI bands corresponded to C-bands. Based on these techniques, we could identify most of chromosomes of the L. longiflorum and L. rubellum karyotypes.  相似文献   

20.
Molecular mapping of the centromeres of tomato chromosomes 7 and 9   总被引:4,自引:0,他引:4  
The centromeres of two tomato chromosomes have been precisely localized on the molecular linkage map through dosage analysis of trisomic stocks. To map the centromeres of chromosomes 7 and 9, complementary telo-, secondary, and tertiary trisomic stocks were used to assign DNA markers to their respective chromosome arms and thus to localize the centromere at the junction of the short and long arms. It was found that both centromeres are situated within a cluster of cosegregating markers. In an attempt to order the markers within the centric clusters, genetic maps of the centromeric regions of chromosomes 7 and 9 were constructed from F2 populations of 1620Lycopersicon esculentum × L. pennellii (E × P) plants and 1640L. esculentum × L. pimpinellifolium (E × PM) plants. Despite the large number of plants analyzed, very few recombination events were detected in the centric regions, indicating a significant suppression of recombination at this region of the chromosome. The fact that recombination suppression is equally strong in crosses between closely related (E × PM) and remotely related (E × P) parents suggests that centromeric suppression is not due to DNA sequence mismatches but to some other mechanism. The greatest number of centromeric markers was resolved in theL. esculentum × L. pennellii F2 population. The centromere of chromosome 7 is surrounded by eight cosegregating markers: three on the short arm, five on the long arm. Similarly, the centric region of chromosome 9 contains ten cosegregating markers including one short arm marker and nine long arm markers. The localization of centromeres to precise intervals on the molecular linkage map represents the first step towards the characterization and ultimate isolation of tomato centromeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号