首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A digoxigenin-labelled 5S rDNA probe containing the 5S rRNA gene and the adjacent intergenic spacer was used for in situ hybridization to metaphase and interphase chromosomes of a trisomic stock from sugar beet (Beta vulgaris L.). Three chromosomes of primary trisomic line IV (T. Butterfass. Z. Bot. 52: 46-77. 1964) revealed signals close to the centromeres. Polymorphisms of 5S rDNA repeats in a segregating population were used to map genetically the 5S rRNA genes within a cluster of markers in linkage group II of sugar beet. The concentration of genetic markers around the centromere presumably reflects the suppressed recombination frequency in centromeric regions. The correlation of physical and genetic data allowed the assignment of a linkage group to sugar beet chromosome IV according to line IV of the primary trisomics.  相似文献   

2.
Integration of molecular and classical genetic maps is an essential requirement for marker-assisted breeding, quantitative trait locus mapping and map-based cloning. With respects to tomato, such maps are only available for the top part of chromosome 1, for chromosome 3 and for the short arm and the centromere proximal part of the long arm of chromosome 6. Employing an L. esculentum line carrying an L. hirsutum introgression we constructed an integrated linkage map for the telomere proximal part of the long arm of tomato chromosome 6, thereby completing the integrated map published previously. With an average map distance of only 0.6 cM the map provides detailed information on the relative position of molecular markers and several traits of economical importance, such as the fruit color marker B. Furthermore, two additional crosses using lines containing L. pennellii introgressions were performed to address the question as to how the recombination frequency in a marked interval on the long arm of chromosome 6 is affected by introgressed segments from different origins. It is concluded that recombination is not merely affected by the local level of homology but also by surrounding sequences. Combination of all the linkage data generated in various crosses described in this and other studies enabled the construction of the first integrated map of an entire tomato chromosome. This map carries 42 loci and shows the position of 15 classical genes relative to 59 molecular markers.  相似文献   

3.
From biological and genetic standpoints, centromeres play an important role in the delivery of the chromosome complement to the daughter cells at cell division. The positions of the centromeres of potato were determined by half-tetrad analysis in a 4x-2x population where the male parent produced 2n pollen by first-division restitution (FDR). The genetic linkage groups and locations of 95 male parent-derived amplified fragment length polymorphism markers could be determined by comparing their position on a 2x-2x highly saturated linkage map of potato. Ten centromere positions were identified by 100% heterozygosity transmitted from the 2n heterozygous gametes of the paternal parent into the tetraploid offspring. The position of these centromeric marker loci was in accordance with those predicted by the saturated 2x-2x map using the level of marker clustering as a criterion. Two remaining centromere positions could be determined by extrapolation. The frequent observation of transmission of 100% heterozygosity proves that the meiotic restitution mechanism is exclusively based on FDR. Additional investigations on the position of recombination events of three chromosomes with sufficient numbers of markers showed that only one crossover occurred per chromosome arm, proving strong interference of recombination between centromere and telomere.  相似文献   

4.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

5.
Genetic mapping of centromeres has been a challenge for plant geneticists. The objective of this study was to develop a new strategy for determining the locations of centromeric regions on genetic maps by mapping centromere-associated sequences, to make it possible to define the centromeric region of each chromosome as a single Mendelian locus on the molecular linkage map. Two DNA probes containing sequences specifically associated with the centromeres of grass species were used for genetic mapping. The centromere-associated sequences for all 12 rice chromosomes were mapped on the molecular map with either or both of the probes, and flanking molecular markers on one or both sides were localized 0 to 8 cM away. The map locations of the centromere-associated markers corresponded very well with the positions of centromeric regions determined previously using trisomic analyses for 11 of the 12 chromosomes. The precise mapping of the centromeric regions using these probes makes the molecular map a more complete and informative tool for genomic studies, which will facilitate studies of the structure and function of the rice centromeres. The simplicity of this technique, together with the fact that these probes are also associated with the centromeric regions in other grass species, may provide a general approach to the mapping of centromeric regions in the genomes of other cereal crops. Received: 8 July 1999 / Accepted: 19 November 1999  相似文献   

6.
Telosomic stocks have been extensively used to map genes to chromosome arms and to determine gene-to-centromere genetic distances. It has been suggested that if a chromosome arm is present as a telosome, recombination frequencies will be drastically reduced in the centromeric region. However, previous studies have not considered the bias in recombination estimates due to selection against aneuploid gametes produced by failure of pairing at the first meiotic division. Formulas are derived here for adjusting recombination estimates for this bias. Adjusted recombination frequencies between markers located on both sides of the centromeres are analyzed in three different pairs of wheat (Triticum aestivum) isogenic segregating populations involving bibrachial and telocentric chromosomes. Recombination frequencies estimated from crosses involving telocentric chromosomes were not significantly different from recombination frequencies estimated from isogenic crosses involving bibrachial chromosomes. The implications of the present findings for karyotype evolution, and specifically for Robertsonian fissions and fusions, are discussed. Received: 10 March 1999 / Accepted: 17 June 1999  相似文献   

7.
Summary Genetic mapping of polymorphic C-bands allows direct comparisons between genetic and physical maps. Eleven C-bands and two seed storage protein genes on chromosome 1B, polymorphic between Langdon durum and four accessions of T. dicoccoides, were used to study the distribution of recombination along the entire length of the chromosome. Recombination in the short arm was almost completely restricted to the satellite, two-thirds of the arm's length from the centromere; the Gli-B1 gene was found to be tightly linked to the telomeric C-band. In the long arm, the distal 51.4% of the arm accounted for 88% of recombination; the proximal half of the arm accounted for the remaining 12%. While the amount of crossing-over differed significantly between the four T. dicoccoides 1B chromosomes, there were no significant differences in the relative distributions of crossing-over along the chromosome. Consequently, the genetic maps obtained from the four individual T. dicoccoides chromosomes were combined to yield a consensus map of 14 markers (including the centromere) for the chromosome.  相似文献   

8.
Lamb JC  Meyer JM  Birchler JA 《Chromosoma》2007,116(3):237-247
A maize line, knobless Tama flint (KTF), was found to contain a version of chromosome 8 with two spatially distinct regions of centromeric elements, one at the original genetic position and the other at a novel location on the long arm. The new site of centromeric elements functions as the kinetochore-forming region resulting in a change of arm length ratio. Examination of fluorescence in situ hybridization markers on chromosome 8 revealed an inversion between the two centromere sites relative to standard maize lines, indicating that this chromosome 8 resulted from a hemicentric inversion with one breakpoint approximately 20 centi-McClintocks (cMc) on the long arm (20% of the total arm length from the centromere) and the other in the original cluster of centromere repeats. This inversion moved the kinetochore-forming region but left the remainder of the centromere repeats. In a hybrid between a standard line (Mo17) and KTF, both chromosome 8 homologues were completely synapsed at pachytene despite the inversion. Although the homologous centromeres were not paired, they were always correctly oriented at anaphase and migrated to opposite poles. Additionally, recombination on 8L was severely repressed in the hybrid.  相似文献   

9.
The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.  相似文献   

10.
A de novo dicentric Y;21 (q11.23;p11) translocation chromosome with one of its two centromeres inactive has provided the opportunity to study the relationship between centromeric inactivation, the organization of alphoid satellite DNA and the distribution of CENP-C. The proband, a male with minor features of Down’s syndrome, had a major cell line with 45 chromosomes including a single copy of the translocation chromosome, and a minor one with 46 chromosomes including two copies of the translocation chromosome and hence effectively trisomic for the long arm of chromosome 21. Centromeric activity as defined by the primary constriction was variable: in most cells with a single copy of the Y;21 chromosome, the Y centromere was inactive. In the cells with two copies, one copy had an active Y centromere (chromosome 21 centromere inactive) and the other had an inactive Y centromere (chromosome 21 centromere active). Three different partial deletions of the Y alphoid array were found in skin fibroblasts and one of these was also present in blood. Clones of single cell origin from fibroblast cultures were analysed both for their primary constriction and to characterise their alphoid array. The results indicate that (1) each clone showed a fixed pattern of centromeric activity; (2) the alphoid array size was stable within a clone; and (3) inactivation of the Y centromere was associated with both full-sized and deleted alphoid arrays. Selected clones were analysed with antibodies to CENP-C, and staining was undetectable at both intact and deleted arrays of the inactive Y centromeres. Thus centromeric inactivation appears to be largely an epigenetic event. Received: 30 January 1997; in revised form: 3 April 1997 / Accepted: 8 May 1997  相似文献   

11.
Linkage mapping is often used to identify genes associated with phenotypic traits and for aiding genome assemblies. Still, many emerging maps do not locate centromeres – an essential component of the genomic landscape. Here, we demonstrate that for genomes with strong chiasma interference, approximate centromere placement is possible by phasing the same data used to generate linkage maps. Assuming one obligate crossover per chromosome arm, information about centromere location can be revealed by tracking the accumulated recombination frequency along linkage groups, similar to half‐tetrad analyses. We validate the method on a linkage map for sockeye salmon (Oncorhynchus nerka) with known centromeric regions. Further tests suggest that the method will work well in other salmonids and other eukaryotes. However, the method performed weakly when applied to a male linkage map (rainbow trout; O. mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations, our method should work well for high‐density maps in species with strong recombination interference and will enrich many existing and future mapping resources.  相似文献   

12.
Summary Seven complete chromosomes and nine telocentric chromosomes in telotrisomics of barley (Hordeum vulgare L.) were identified and designated by an improved Giemsa N-banding technique. Karyotype analysis and Giemsa N-banding patterns of complete and telocentric chromosomes at somatic late prophase, prometaphase and metaphase have shown the following results: Chromosome 1 is a median chromosome with a long arm (Telo 1L) carrying a centromeric band, while short arm (Telo 1S) has a centromeric band and two intercalary bands. Chromosome 2 is the longest in the barley chromosome complement. Both arms show a centromeric band, an intercalary band and two faint dots on each chromatid at middle to distal regions. The banding pattern of Telo 2L (a centromeric and an intercalary band) and Telo 2S (a centromeric, two intercalary and a terminal band) corresponded to the banding pattern of the long and short arm of chromosome 2. Chromosome 3 is a submedian chromosome and its long arm is the second longest in the barley chromosome complement. Telo 3L has a centromeric (fainter than Telo 3S) and an intercalary band. It also shows a faint dot on each chromatid at distal region. Telo 3S shows a dark centromeric band only. Chromosome 4 is the most heavily banded one in barley chromosome complement. Both arms showed a dark centromeric band. Three dark intercalary bands and faint telomeric dot were observed in the long arm (4L), while two dark intercalary bands in the short arm (4S) were arranged very close to each other and appeared as a single large band in metaphase chromosomes. A faint dot was observed in each chromatid at the distal region in the 4S. Chromosome 5 is the smallest chromosome, which carries a centromeric band and an intercalary band on the long arm. Telo 5L, with a faint centromeric band and an intercalary band, is similar to the long arm. Chromosomes 6 and 7 are satellited chromosomes showing mainly centromeric bands. Telo 6S is identical to the short arm of chromosome 6 with a centromeric band. Telo 3L and Telo 4L were previously designated as Telo 3S and Telo 4S based on the genetic/linkage analysis. However, from the Giemsa banding pattern it is evident that these telocentric chromosomes are not correctly identified and the linkage map for chromosome 3 and 4 should be reversed. One out of ten triple 2S plants studied showed about 50% deficiency in the distal portion of the short arm. Telo 4L also showed a deletion of the distal euchromatic region of the long arm. This deletion (32%) may complicate genetic analysis, as genes located on the deficient segment would show a disomic ratio. It has been clearly demonstrated that the telocentric chromosomes of barley carry half of the centromere. Banding pattern polymorphism was attributed, at least partly, to the mitotic stages and differences in techniques.Contribution from the Department of Agronomy and published with the approval of the Director of the Colorado State University Experiment Station as Scientific Series Paper No. 2730. This research was supported in part by the USDA/SEA Competitive Research Grant 5901-0410-9-0334-0, USDA/ SEA-CSU Cooperative Research Grant 12-14-5001-265 and Colorado State University Hatch Project. This paper was presented partly at the Fourth International Barley Genetics Symposium, Edinburgh, Scotland, July 22–29, 1981  相似文献   

13.
Few angiosperms have distinct Y chromosomes. Among those that do are Silene latifolia (Caryophyllaceae), Rumex acetosa (Polygonaceae) and Coccinia grandis (Cucurbitaceae), the latter having a male/female difference of 10% of the total genome (female individuals have a 0.85 pg genome, male individuals 0.94 pg), due to a Y chromosome that arose about 3 million years ago. We compared the sequence composition of male and female C. grandis plants and determined the chromosomal distribution of repetitive and organellar DNA with probes developed from 21 types of repetitive DNA, including 16 mobile elements. The size of the Y chromosome is largely due to the accumulation of certain repeats, such as members of the Ty1/copia and Ty3/gypsy superfamilies, an unclassified element and a satellite, but also plastome‐ and chondriome‐derived sequences. An abundant tandem repeat with a unit size of 144 bp stains the centromeres of the X chromosome and the autosomes, but is absent from the Y centromere. Immunostaining with pericentromere‐specific markers for anti‐histone H3Ser10ph and H2AThr120ph revealed a Y‐specific extension of these histone marks. That the Y centromere has a different make‐up from all the remaining centromeres raises questions about its spindle attachment, and suggests that centromeric or pericentromeric chromatin might be involved in the suppression of recombination.  相似文献   

14.
A Genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.)   总被引:2,自引:0,他引:2  
A genetic linkage map has been constructed for Atlantic halibut on the basis of 258 microsatellites and 346 AFLPs. Twenty-four linkage groups were identified, consistent with the 24 chromosomes seen in chromosome spreads. The total map distance is 1562.2 cM in the female and 1459.6 cM in the male with an average resolution of 4.3 and 3.5 cM, respectively. Using diploid gynogens, we estimated centromere locations in 19 of 24 linkage groups. Overall recombination in the female was approximately twice that of the male; however, this trend was not consistent along the linkage groups. In the centromeric regions, females had 11-17.5 times the recombination of the males, whereas this trend reversed toward the distal end with males having three times the recombination of the females. Correspondingly, in the male, markers clustered toward the centromeric region with 50% of markers within 20 cM of the putative centromere, whereas 35% of markers in the female were found between 60 and 80 cM from the putative centromere. Limited interspecies comparisons within Japanese flounder and Tetraodon nigroviridis revealed blocks of conservation in sequence and marker order, although regions of chromosomal rearrangement were also apparent.  相似文献   

15.
The classical map of the short arm of chromosome 1 of tomato (Lycopersicon esculentum) has been shown to contain inaccuracies while the RFLP map of this region is known to be generally accurate. Molecular analysis of populations derived from crosses between L. esculentum lines carrying chromosome 1 classical markers and L. pennellii has enabled us to produce an integrated classical and RFLP marker map of this region. New data concerning the linkage relationships between classical markers have also been combined with previous data to produce a new classical map of the short arm of chromosome 1. The orders of the classical markers on these two new maps are in almost complete agreement and are very different to that shown on the previous classical map.  相似文献   

16.
A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cvM82-1-7) and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.  相似文献   

17.
The gametes produced in meiosis provide information on the frequency of recombination and also on the interdependence of recombination events, i.e. interference. Using F2 individuals, it is not possible in all cases to derive the gametes, which have fused, and which provide the information about interference unequivocally when three or more segregating markers are considered simultaneously. Therefore, a method was developed to estimate the gametic frequencies using a maximum likelihood approach together with the expectation maximisation algorithm. This estimation procedure was applied to F2 mapping data from rice (Oryza sativa L.) to carry out a genome-wide analysis of crossover interference. The distribution of the coefficient of coincidence in dependence on the recombination fraction revealed for all chromosomes increasing positive interference with decreasing interval size. For some chromosomes this mutual inhibition of recombination was not so strong in small intervals. The centromere had a significant effect on interference. The positive interference found in the chromosome arms were reduced significantly when the intervals considered spanned the centromere. Two chromosomes even demonstrated independent recombination and slightly negative interference for small intervals including the centromere. Different marker densities had no effect on the results. In general, interference depended on the frequency of recombination events in relation to the physical length. The strength of the centromere effect on interference seemed to depend on the strength of recombination suppression around the centromere.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

18.
Robertsonian chromosomes are metacentric chromosomes formed by the joining of two telocentric chromosomes at their centromere ends. Many Robertsonian chromosomes of the mouse suppress genetic recombination near the centromere when heterozygous. We have analyzed genetic recombination and meiotic pairing in mice heterozygous for Robertsonian chromosomes and genetic markers to determine (1) the reason for this recombination suppression and (2) whether there are any consistent rules to predict which Robertsonian chromosomes will suppress recombination. Meiotic pairing was analyzed using synaptonemal complex preparations. Our data provide evidence that the underlying mechanism of recombination suppression is mechanical interference in meiotic pairing between Robertsonian chromosomes and their telocentric partners. The fact that recombination suppression is specific to individual Robertsonian chromosomes suggests that the pairing delay is caused by minor structural differences between the Robertsonian chromosomes and their telocentric homologs and that these differences arise during Robertsonian formation. Further understanding of this pairing delay is important for mouse mapping studies. In 10 mouse chromosomes (3, 4, 5, 6, 8, 9, 10, 11, 15 and 19) the distances from the centromeres to first markers may still be underestimated because they have been determined using only Robertsonian chromosomes. Our control linkage studies using C-band (heterochromatin) markers for the centromeric region provide improved estimates for the centromere-to-first-locus distance in mouse chromosomes 1, 2 and 16.  相似文献   

19.
The aneuploid with isochromosome or telochromosome is ideal material for exploring the position of centromere in lingkage map.For obtaining these aneuploids in rice,the primary trisomics from triplo-1 to triplo-12 and the aneuploids derived from a triploid of indica rice variety Zhongxiao 3037 were carefully investigated.From the offsprings of triplo-10,a primary trisomic of chromosome 10 of the variety,an isotetrasomic “triplo-10-1” was obtained.Cytological investigation revealed that a pair of extra isochromosomes of triplo-10-1 were come from the short arm of chromosome 10.In the offsprings of the isotetrasomic,a secondary trisomic “triplo-10-2”,in which the extra-chromosome was an isochromosome derived from the short arm of chromosome 10,was identified.With the isotetrasomic,secondary trisomic,primary trisomic and diploid of variety Zhongxiao 3037,different molecular markers were used for exploring the position of the centromere of chromosome 10.Based on the DNA dosage effect,it was verified that the molecular markers G1125,G333 and L169 were Located on the short arm,G1084 and other 16 available molecular markers were on the long arm of chromosome 10.So the centromere of chromosome 10 was located somewhere between G1125 and G1084 according to the RFLP linkage map given by Kurata et al[1].The distance from G1125 to G1084 was about 3.2cM.  相似文献   

20.
In order to map genes determining resistance to bacterial canker in tomato, backcrosses were made between a resistant and a susceptible Lycopersicon peruvianum accession. The linkage study with RFLP markers yielded a genetic map of L. Peruvianum. This map was compared to that derived from a L. esculentum x L. pennellii F2 population, based on 70 shared RFLP markers. The maps showed a good resemblance in both the order of markers and the length of the chromosomes, with the exception of just one relocated marker on chromosome 9. Because backcrosses were made with the F1, either as the pollen parent or as the pistil parent, linkage maps from male and female meioses could be estimated. It was concluded that recombination at male meiosis was reduced, and that gametophytic selection for parental genotypes at more than one locus per chromosome might be partly responsible for the reduction of the estimated male map length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号