首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
太岳山典型阔叶乔木冠层叶片性状的分布格局   总被引:1,自引:1,他引:0  
以太岳山4种阔叶乔木不同冠层高度的叶片为研究对象,用LI-3000A叶面积仪和Li-6400便携式光合作用测定系统分别测定了这4种乔木不同冠层高度叶片的叶面积大小和单位面积的叶光饱和速率(Aarea);同时测定了其叶氮含量;计算了其比叶面积(SLA)、单位面积叶氮含量(Narea)、单位重量叶氮含量(Nmass)、单位重量的叶光饱和速率(Amass)和光合氮素利用效率(PNUE),对植株不同冠层高度叶片的SLA、叶氮和光合特性的空间分布格局进行了比较研究,结果表明:Aarea、Amass、Nmass、PNUE、SLA和Narea在树冠上层、中层和下层的差异均达到了极显著水平(P<0.001),表明树冠不同高度的叶片性状参数差异较大;在相同SLA下,Nmass和Narea在冠层中的分布均表现为中层>上层>下层,并出现平行位移现象;Aarea和Nmass都以中层值最大,表明冠层光合能力分布格局以中层相对较高。  相似文献   

2.
黄土高原水蚀风蚀交错带不同生境植物的叶性状   总被引:2,自引:0,他引:2  
白文娟  郑粉莉  董莉丽  丁晓斌 《生态学报》2010,30(10):2529-2540
研究不同生境和不同植被演替阶段的叶性状,将为区域植被建设提供重要科学指导。以黄土高原水蚀风蚀交错带的典型区——神木六道沟流域为研究地点,研究了不同生境植物叶性状的种间和种内差异、退耕地植被演替过程中叶性状的变化及其相互关系。结果表明:(1)不同生境植物的光合特征和叶片结构特征的种间差异较大,这可能是植物长期适应生态环境的结果,同时也与其本身固有的遗传特性有关。(2)在物种水平上,最大光合速率(Pmax)、光合氮素利用效率(PNUE)和比叶面积(SLA)随退耕年限的增加呈显著下降趋势,而水分利用效率(WUE)、叶氮含量(Nmass)与退耕年限相关关系不显著。在群落水平上,除SLA与退耕年限的相关性不显著以外,其它指标皆与物种水平的变化趋势一致。(3)研究区32个物种的Pmax与WUE、PNUE、Nmass呈显著正相关(P0.05),而与SLA的相关关系不显著。PNUE与WUE、SLA呈显著正相关(P0.001),而与Nmass的相关性不显著;物种的Nmass与SLA呈显著正相关(P0.001)。同其它地区相比,研究区物种的Pmax、PNUE、SLA较低。具有较低Pmax、PNUE、SLA的物种可能更适宜研究区土壤贫瘠的生境。  相似文献   

3.
以山西翼城翅果油树(Elaeagnus mollis)自然保护区的翅果油树为研究对象,利用LI-3000A叶面积测定仪测量其单叶面积,用Li-6400便携式光合作用测定系统测定单位叶面积饱和光合速率(Aaraa),用H2SO4-H2O2消煮法测定叶氮含量,计算叶性参数比叶面积(SLA)、单位叶重量饱和光合速率(Amass)、光合氮利用率(PNUE)和单位重量叶氮含量(Nmass)的值,并研究它们与径级之间的关系.结果表明:随着翅果油树径级的增加,SLA、Nmass、Aarea、Amass和PNUE值先下降后上升,当翅果油树径级为7.5 cm左右时,SLA、Nmass、Aarea、Amass和PNUE值均降到最小值,表明径级为7.5 cm左右的翅果油树其光合能力最弱、光合氮利用率较低且生存压力较大.翅果油树叶性参数是研究翅果油树种群动态变化的有效指标,可为研究翅果油树种群动态提供更为便捷的方法.  相似文献   

4.
不同功能型植物光合特性及其与叶氮含量、比叶重的关系   总被引:23,自引:3,他引:20  
以秦岭南部的宁陕县和黄土高原地区的富县和神木为研究地点,研究不同气候带区乔木、灌木和草本植物的光合特性及其与叶片氮含量(Nmass)、比叶重(LMA)的作用关系。结果表明,宁陕、富县和神木3个地区之间的乔木、灌木和草本植物的光饱和速率(Pmax)、光合氮利用效率(PNUE)、PSⅡ电子传递量子效率(ФPSⅡ)、Nmass和LMA差异均达显著水平(P〈0.05),神木地区乔木、灌木和草本植物的Pmax均显著高于宁陕和富县。3个地区的乔木、灌木和草本植物之间的Pmax、PNUE、ФPSⅡ、PSⅡ最大光能转换效率(Fv/Fm)、Nmass和LMA差异均达显著水平(p〈0.05),草本植物的Pmax和PNUE明显高于灌木和乔木。由南向北分布的宁陕、富县和神木3个地区,随着气候干旱的加剧,乔木、灌木和草本植物的LMA均星增加的趋势,且不同功能型植物的LMA的大小比较为:乔木〉灌木〉草本植物。宁陕、富县和神木地区近60种植物(包括乔木、灌木和草本植物)的LMA与Nmass、PNUE与LMA均呈极显著的负相关(p〈0.01),而Pmax与Nmass。呈显著的正相关(P〈0.05)。对光合参数之间的相关分析表明,Pmax与PNUE呈极显著的正相关(P〈0.01),而Pmax与中PSⅡ呈极显著的负相关(p〈0.01)。  相似文献   

5.
光照条件对高山杜鹃光合生理特性的影响   总被引:3,自引:0,他引:3  
以高山杜鹃‘Furnivall’s Daughter’3年生植株为材料,采用遮阳网遮荫方法设置100%(L1)、53%(L2)、30%(L3)、17%(L4)全光照,研究不同光照对其光合特性及其相关生理特性的影响,探讨高山杜鹃对不同光强的响应及适应机制。结果表明:(1)与全光照条件相比,遮阴处理可有效提高光饱和点(LSP),降低光补偿点(LCP)和呼吸速率(Rd),从而具有较高的净光合速率(Pn);其中L3处理植株的LCP、Rd最低,而且其LSP和饱和光合速率(Pmax)最高,表明L3光照条件是其最适宜的生长光强。(2)随着光照强度的降低,叶片的叶绿素a呈轻微下降趋势,而叶绿素b、单位面积叶氮含量(LNCa)、光合氮利用效率(PNUE)则呈显著增加趋势,且光照强度对叶绿素b的影响较叶绿素a敏感,从而导致总叶绿素含量显著增加,而叶绿素a/b比值下降。(3)可塑性分析结果表明,高山杜鹃‘Furnivall’s Daughter’主要通过Pmax、LSP、LCP、Rd、PNUE和叶绿素含量的改变来适应光环境的变化,而比叶重(LMA)、LNCa、丙二醛(MDA)、超氧化物歧化酶(SOD)在其适应光环境的过程中作用较小。  相似文献   

6.
 为了解甘南亚高山草甸围封地恢复演替动态, 探究围封恢复进程中植物光合生理特征的变化规律及其影响因子, 对围封试验地内5个典型群落样地进行样方调查, 测定了各群落优势种及3个共有种的光合参数和叶性状参数, 并测定了群落表层土壤(0–20 cm)的水分含量及全氮含量。结果显示: 该围封地内形成一个以草本植物→半灌木→灌木的演替序列, 群落表层土壤含水量及全氮含量随着演替的进行逐渐增加; 在演替的时间尺度上, 各演替阶段优势种光合生理特征间存在明显差异, 随着演替的进行, 群落优势种的净光合速率(Aarea)、光合水分利用效率(WUE)、相对叶绿素含量(SPAD)呈降低趋势, 其叶片氮含量(Nmass)、光合氮利用效率(PNUE)、比叶面积(SLA)随演替变化没有严格一致的规律, 而更多地表现为不同植物功能型之间的差异; 从演替前期到后期, 同种植物的Aarea、SPAD值逐渐降低, 非豆科植物披碱草(Elymus dahuricus)、老鹳草(Geranium wilfordii)的PNUE、WUE随演替进行呈降低趋势, 其Nmass、SLA随演替进行却呈增加趋势, 然而豆科植物紫苜蓿(Medicago sativa)由于具有固氮能力, 受养分限制不明显, 这些光合生理特征值没有随演替发生明显的变化。这些结果表明, 在恢复演替过程中, 该围封地由一个物质获得能力强的群落向物质保持能力强的群落过渡, 土壤水分含量及全氮含量是推动这种过渡发生的主要因子。掌握围封地群落演替过程中的光合生理动态对于亚高寒退化草甸恢复具有一定的理论指导意义。  相似文献   

7.
以浙江天童国家森林公园常绿阔叶林为研究对象,采用空间代替时间的方法,研究了5个不同演替阶段常见的4种乔木以及4种灌木叶片的光饱和速率(Pmax)、光合氮素利用效率(PNUE)及其与叶片氮含量(NL)、叶片氮素在细胞壁的分配比例(细胞壁N/叶片总N,NCW/NL)、氮素在光合酶中的分配比例(NR/NL)、单位面积叶干重(LMA)的相互关系。结果表明:(1)演替系列4种乔木和4种灌木各种间指标除NL外均表现出显著差异,前期种较后期种具有更高的NR/NL、PNUE、Pmax,而后期种LMA、NCW/NL、MCW/ML(细胞壁干重/叶片总干重)更大,NL在乔木各种间差异不明显,在灌木种间则差异显著;乔木种较灌木种具有更大的LMA、NCW/NL、MCW/ML,而NR/NL则较灌木小;8种植物的Pmax与NL以杨梅为最高,连蕊茶最低;苦槠具有最高的PNUE,而栲树最低。(2)随着演替的进行,前期种的NR/NL、PNUE、Pmax有减小趋势,而LMA、NCW/NL、MCW/ML逐渐增大,后期种则表现出相反的趋势。(3)NR/NL与Pmax、PNUE之间呈显著正相关关系,而LMA、NCW/NL、MCW/ML则与Pmax、PNUE、NR/NL显著负相关。研究认为,NR/NL与NCW/NL之间的负相关性及其对PNUE的影响可以在一定程度上解释树木在光合与维持两方面的权衡关系以及演替的生理机制。  相似文献   

8.
干旱和湿润生境中主要优势树种叶片功能性状的比较   总被引:1,自引:0,他引:1  
以云南南部的沟谷雨林(湿润生境)和干热河谷萨瓦纳(savanna)稀树灌丛(干旱生境)中共31种主要优势木本植物为材料,研究了叶片主要功能性状单位面积叶干重(LMA)、单位干重氮含量(Nmass)和单位干重最大净光合速率(Amass)在2个生境中的差异及各性状间的关系。结果表明:在物种水平上,干旱和湿润生境中各树种的LMA值分别为46.88~178.63和45.35~93.16g·m-2;Amass值分别为48.12~176.65和71.38~265.76nmol·g-1·s-1;Nmass值分别为11.8~36.71和12.98~31.78mg·g-1;在群落水平上,干旱生境中LMA显著高于湿润生境,而Amass显著低于湿润生境,Nmass在2个生境中差异不显著;在群落尺度上,干旱生境中LMA与Nmass和Amass均呈显著负相关;在2生境中Nmass与Amass均呈显著正相关。同一生境下不同植物对环境的适应策略有差异,但各性状间的相关关系具有趋同性;从湿润到干旱生境,植物由快速生长转向以提高资源利用效率为主的适应策略。  相似文献   

9.
白坤栋  蒋得斌  万贤崇 《生态学报》2013,33(16):4930-4938
分析广西猫儿山不同海拔常绿和落叶树种的光合作用-氮关系,探讨光合氮利用效率(PNUE)是否受到叶片习性和海拔的影响。落叶树种的PNUE都显著高于常绿树种,这与前者有较低的比叶重(LMA)和较高的单位叶重光合速率(Amass)、氮含量和气孔导度(gs)有密切关系。高海拔树种的PNUE显著低于中低海拔树种的PNUE,这与前者较高的LMA和较低的Amass和gs相关。PNUE和相关的叶片特征的主成分分析表明常绿-落叶树种和低海拔-中海拔-高海拔树种的分布是一个自然过渡的过程。此外,PNUE与土壤碳:氮比没有显著相关性,但与年均温正相关,这表明温度气候是调节PNUE沿海拔变化的主要环境因素。因此,这种叶片习性和温度气候调节的PNUE变化可能是调节猫儿山常绿树种沿海拔形成双峰分布的一种机制。  相似文献   

10.
为探究富氮环境中固氮(nitrogen-fixing leguminous trees,NLT)与非固氮豆科树种(non-nitrogen-fixing leguminous trees,n-NLT)的叶片养分利用策略差异,以华南地区5种NLT植物[水黄皮(Pongamia pinnata)、大叶相思(Acacia auriculiformis)、朱樱花(Calliandra haematocephala)、海南红豆(Ormosia pinnata)、台湾相思(Acacia confusa)]和3种n-NLT植物[油楠(Sindora glabra)、中国无忧花(Saraca dives)、银珠(Peltophorum tonkinense)]为对象,测定其单位质量叶片碳(C)、氮(N)和磷(P)含量及其比值、单位面积叶片最大净光合速率(Aarea)和叶片光合氮、磷利用效率(PNUE、PPUE)等功能性状。结果表明,NLT的单位质量叶片N、P含量和Aarea均显著高于n-NLT,而两者PNUE和PPUE无显著差异;尽管两类植物单位质量叶片C含量无显著差异,但NLT的叶片C:N和C:P显...  相似文献   

11.
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.  相似文献   

12.
Previous modelling exercises and conceptual arguments have predicted that a reduction in biochemical capacity for photosynthesis (Aarea) at elevated CO2 may be compensated by an increase in mesophyll tissue growth if the total amount of photosynthetic machinery per unit leaf area is maintained (i.e. morphological upregulation). The model prediction was based on modelling photosynthesis as a function of leaf N per unit leaf area (Narea), where Narea = Nmass×LMA. Here, Nmass is percentage leaf N and is used to estimate biochemical capacity and LMA is leaf mass per unit leaf area and is an index of leaf morphology. To assess the relative importance of changes in biochemical capacity versus leaf morphology we need to control for multiple correlations that are known, or that are likely to exist between CO2 concentration, Narea, Nmass, LMA and Aarea. Although this is impractical experimentally, we can control for these correlations statistically using systems of linear multiple-regression equations. We developed a linear model to partition the response of Aarea to elevated CO2 into components representing the independent and interactive effects of changes in indexes of biochemical capacity, leaf morphology and CO2 limitation of photosynthesis. The model was fitted to data from three pine and seven deciduous tree species grown in separate chamber-based field experiments. Photosynthetic enhancement at elevated CO2 due to morphological upregulation was negligible for most species. The response of Aarea in these species was dominated by the reduction in CO2 limitation occurring at higher CO2 concentration. However, some species displayed a significant reduction in potential photosynthesis at elevated CO2 due to an increase in LMA that was independent of any changes in Narea. This morphologically based inhibition of Aarea combined additively with a reduction in biochemical capacity to significantly offset the direct enhancement of Aarea caused by reduced CO2 limitation in two species. This offset was 100% for Acer rubrum, resulting in no net effect of elevated CO2 on Aarea for this species, and 44% for Betula pendula. This analysis shows that interactions between biochemical and morphological responses to elevated CO2 can have important effects on photosynthesis.  相似文献   

13.
To elucidate mechanisms for tolerating sudden increases in light intensity following canopy gap formation, we investigated susceptibility to photoinhibition in the evergreen clonal plant bamboo, Sasa senanensis, and two deciduous broadleaf woody plants, Quercus mongolica, and Acer mono. We measured pre-dawn photochemical efficiency of photosystem II (F v /F m) in plants exposed to canopy gaps and in shade-grown plants through the month following gap formation. Photoinhibition (indicated by decreased F v /F m) was smallest in S. senanensis and largest in A. mono. S. senanensis had the highest area-based net CO2 assimilation rate (A area) and electron transport rate (ETR) under high light conditions. This species also had the highest leaf mass per area (LMA) and leaf nitrogen content per area (N area). Higher values of LMA and N area under shade conditions probably contribute to circumvent photoinhibition through maintenance of a higher ETR capacity. Q. mongolica, a gap-dependent species, had properties intermediate between S. senanensis and A. mono; it appeared less susceptible to photoinhibition than the shade-tolerant A. mono. None of the species examined had increased photosynthetic capacity 1 month after gap formation, indicating that shade-grown leaves were unable to fully acclimate to increased light.  相似文献   

14.
Factors that contribute to interspecific variation in photosynthetic nitrogen-use efficiency (PNUE, the ratio of CO2 assimilation rate to leaf organic nitrogen content) were investigated, comparing ten dicotyledonous species that differ inherently in specific leaf area (SLA, leaf area:leaf dry mass). Plants were grown hydroponically in controlled environment cabinets at two irradiances (200 and 1000 μmol m–2 s–1). CO2 and irradiance response curves of photosynthesis were measured followed by analysis of the chlorophyll, Rubisco, nitrate and total nitrogen contents of the leaves. At both irradiances, SLA ranged more than twofold across species. High-SLA species had higher in situ rates of photosynthesis per unit leaf mass, but similar rates on an area basis. The organic N content per unit leaf area was lower for the high-SLA species and consequently PNUE at ambient light conditions (PNUEamb) was higher in those plants. Differences were somewhat smaller, but still present, when PNUE was determined at saturating irradiances (PNUEmax). An assessment was made of the relative importance of the various factors that underlay interspecific variation in PNUE. For plants grown under low irradiance, PNUEamb of high-SLA species was higher primarily due to their lower N content per unit leaf area. Low-SLA species clearly had an overinvestment in photosynthetic N under these conditions. In addition, high SLA-species allocated a larger fraction of organic nitrogen to thylakoids and Rubisco, which further increased PNUEamb. High-SLA species grown under high irradiance showed higher PNUEamb mainly due to a higher Rubisco specific activity. Other factors that contributed were again their lower contents of Norg per unit leaf area and a higher fraction of photosynthetic N in electron transport and Rubisco. For PNUEmax, differences between species in organic leaf nitrogen content per se were no longer important and higher PNUEmax of the high SLA species was due to a higher fraction of N in␣photosynthetic compounds (for low-light plants) and a higher Rubisco specific activity (for high-light grown plants). Received: 11 October 1997 / Accepted: 9 April 1998  相似文献   

15.
A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta‐analysis to reveal effects of N addition on 14 photosynthesis‐related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass, +18.4%) and area basis (Narea, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea, +12.6%), stomatal conductance (gs, +7.5%), and transpiration rate (E, +10.5%). The responses of Aarea were positively related with that of gs, with no changes in instantaneous water‐use efficiency and only slight increases in long‐term water‐use efficiency (+2.5%) inferred from 13C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI and Aarea diminished while that of E increased significantly. The observed patterns of increases in both TLA and E indicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.  相似文献   

16.
The light–nitrogen hypothesis suggests canopy photosynthesis is maximized when there is a positive relationship between irradiance received by foliage, its nitrogen content (per unit area Narea), and maximum rate of photosynthesis (Amax). Relationships among relative irradiance and Narea, allocation of nitrogen within the photosynthetic apparatus to Rubisco and chlorophyll, and Amax were examined in Pinus pinaster Ait. needles up to 6 years of age. Measurements were made before bud break in August 1998, and in May 1999 after the first ‘winter’ rains. In August, Narea in P. pinaster needles decreased from 5·1 to 5·7 g m?2 in sunlit 1‐year‐old needles to 2·3 g m?2 in shaded 6‐year‐old needles. In May, Narea was 5–40% less but spatial trends were the same. At both sampling dates, Amax was less in old shaded needles compared with young sunlit needles, and was thus consistent with the light–nitrogen hypothesis. Relationships between Narea and Amax were positive at both dates yet varied in strength and form. Allocation of nitrogen within the photosynthetic apparatus was qualitatively consistent with acclimation to light (i.e. Rubisco/Chl decreased with shading), but quantitatively suboptimal with respect to photosynthesis owing to consistent over‐investment in Rubisco. This over‐investment increased with height in the canopy and was greater in May than in August.  相似文献   

17.

Background and Aims

Theory for optimal allocation of foliar nitrogen (ONA) predicts that both nitrogen concentration and photosynthetic capacity will scale linearly with gradients of insolation within plant canopies. ONA is expected to allow plants to efficiently use both light and nitrogen. However, empirical data generally do not exhibit perfect ONA, and light-use optimization per se is little explored. The aim was to examine to what degree partitioning of nitrogen or light is optimized in the crowns of three tropical canopy tree species.

Methods

Instantaneous photosynthetic photon flux density (PPFD) incident on the adaxial surface of individual leaves was measured along vertical PPFD gradients in tree canopies at a frequency of 0·5 Hz over 9–17 d, and summed to obtain the average daily integral of PPFD for each leaf to characterize its insolation regime. Also measured were leaf N per area (Narea), leaf mass per area (LMA), the cosine of leaf inclination and the parameters of the photosynthetic light response curve [photosynthetic capacity (Amax), dark respiration (Rd), apparent quantum yield (ϕ) and curvature (θ)]. The instantaneous PPFD measurements and light response curves were used to estimate leaf daily photosynthesis (Adaily) for each leaf.

Key Results

Leaf Narea and Amax changed as a hyperbolic asymptotic function of the PPFD regime, not the linear relationship predicted by ONA. Despite this suboptimal nitrogen partitioning among leaves, Adaily did increase linearly with PPFD regime through co-ordinated adjustments in both leaf angle and physiology along canopy gradients in insolation, exhibiting a strong convergence among the three species.

Conclusions

The results suggest that canopy tree leaves in this tropical forest optimize photosynthetic use of PPFD rather than N per se. Tropical tree canopies then can be considered simple ‘big-leaves’ in which all constituent ‘small leaves’ use PPFD with the same photosynthetic efficiency.Key words: Optimal resource allocation, nitrogen, photosynthetic capacity, leaf mass per area, tropical trees, radiation use efficiency, scaling, leaf angle, canopy architecture, big leaf model  相似文献   

18.
Leaf physiological and gas-exchange traits of a summer-green herbaceous perennial, Parasenecio yatabei, growing along a stream were examined in relation to leaf age. In its vegetative phase, the aerial part of this plant consists of only one leaf and provides an ideal system for the study of leaf longevity. Volumetric soil water content (SWC) decreased with increasing distance from the stream, whereas relative light intensity was nearly constant. The light-saturated net CO2 assimilation rate (A sat) and leaf stomatal conductance (gs) were approximately 1.5-fold and 1.4-fold higher, respectively, in the lower slope near the mountain stream than in the upper slope far from the mountain stream. The lifespan of aerial parts of vegetative plants significantly increased with decreasing SWC. The leaf mass-based nitrogen content of the leaves (N mass) was almost constant (ca. 2.2%); however, the maximum carboxylation rate by ribulose-1,5-biphosphate carboxylase/oxygenase (rubisco) (V cmax) and photosynthetic nitrogen use efficiency (PNUE, A sat/N area) decreased more slowly in the upper slope than in the lower slope. The higher leaf photosynthetic activity of P. yatabei plants growing lower on the slope leads to a decrease in V cmax and PNUE in the early growing season, and to a shorter leaf lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号