首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in specific leaf area (SLA, projected leaf area per unit leaf dry mass) and nitrogen partitioning between proteins within leaves occur during the acclimation of plants to their growth irradiance. In this paper, the relative importance of both of these changes in maximizing carbon gain is quantified. Photosynthesis, SLA and nitrogen partitioning within leaves was determined from 10 dicotyledonous C3 species grown in photon irradiances of 200 and 1000 µmol m?2 s?1. Photosynthetic rate per unit leaf area measured under the growth irradiance was, on average, three times higher for high‐light‐grown plants than for those grown under low light, and two times higher when measured near light saturation. However, light‐saturated photosynthetic rate per unit leaf dry mass was unaltered by growth irradiance because low‐light plants had double the SLA. Nitrogen concentrations per unit leaf mass were constant between the two light treatments, but plants grown in low light partitioned a larger fraction of leaf nitrogen into light harvesting. Leaf absorptance was curvilinearly related to chlorophyll content and independent of SLA. Daily photosynthesis per unit leaf dry mass under low‐light conditions was much more responsive to changes in SLA than to nitrogen partitioning. Under high light, sensitivity to nitrogen partitioning increased, but changes in SLA were still more important.  相似文献   

2.
We tested the hypothesis that invasive (IN) species could capture resources more rapidly and efficiently than noninvasive (NIN) species. Two IN alien species, Ageratina adenophora and Chromolaena odorata, and one NIN alien species, Gynura sp. were compared at five irradiances. Photon-saturated photosynthetic rate (P max), leaf mass (LMA) and nitrogen content (NA) per unit area, and photosynthetic nitrogen utilization efficiency (PNUE) increased significantly with irradiance. LMA, NA, and PNUE all contributed to the increased P max, indicating that both morphological and physiological acclimation were important for the three alien species. Under stronger irradiance, PNUE was improved through changes in N allocation. With the increase of irradiance, the amount of N converted into carboxylation and bioenergetics increased, whereas that allocated to light-harvesting components decreased. The three alien species could adequately acclimate to high irradiance by increasing the ability to utilize and dissipate photon energy and decreasing the efficiency of photon capture. The two IN species survived at 4.5 % irradiance while the NIN species Gynura died, representing their different invasiveness. Ageratina generally exhibited higher respiration rate (R D) and NA. However, distinctly higher P max, PNUE, P max/R D, or P max/LMA were not detected in the two invasive species, nor was lower LMA. Hence the abilities to capture and utilize resources were not always associated with invasiveness of the alien species.  相似文献   

3.
Forest floor of larch species often provides growth habitat for many kinds of understory species because of relatively sparse structure in a larch canopy. A rich flora of forest understory species may play an essential role in maintaining fertility of a larch stand. An attempt was made to evaluate photosynthetic nitrogen use efficiency (PNUE) of many understory and overstory species according to their Raunkiaer lifeform. By studying 72 perennial deciduous species in a larch plantation in northeast China, marked photosynthetic differences between phanerophytes (Ph) and other three lifeforms of chamaephytes (Ch), hemicryptophytes (He), and cryptophytes (Cr) were found, with marginal differences found among Ch, He, and Cr. Ph species had much lower PNUE, and much lower values of rate of nitrogen allocation to chlorophyll (Chl./N) and nitrogen allocation to carboxylation processes (V cmax/N) were concurrently observed in Ph compared with the other three lifeforms. Ph had much lower leaf nitrogen per unit of projection area (N area) and specific leaf area (SLA, cm2 g–1). At lower SLA, for Ph species the change of PNUE with SLA was small, but these changes became very large at higher SLA for Ch, He, and Cr species. Our findings indicate that leaf morphological change is important for clarifying photosynthesis differences among species with different lifeform.  相似文献   

4.
Koesmaryono  Y.  Sugimoto  H.  Ito  D.  Haseba  T.  Sato  T. 《Photosynthetica》1998,35(4):573-578
The diurnal variation of net photosynthetic (PN) and transpiration (E) rates in soybean [Glycine max (L.) Merr. cv. Fukuyutaka] plants grown under 100, 50, or 25 % of full sun irradiance (I100, I50, I25 plants) were compared. In the morning, activities of the plants were measured at irradiances under which they grew. However, during the afternoon, all the plants were tested under full irradiance. The lower the growth irradiance, the lower PN, E, and mesophyll conductance values were found. Stomatal conductance was considerably lower in I25 plants only. Both the increase in specific leaf area (SLA) and the decrease in nitrogen content per leaf area unit contributed to the PN reduction of soybean plants grown under low irradiances. Though E of the plants grown under different irradiances differed less markedly than PN, the water use efficiency declined from I100 to I25.  相似文献   

5.
Photosynthetic capacity is known to vary considerably among species. Its physiological cause and ecological significance have been one of the most fundamental questions in plant ecophysiology. We studied the contents of Rubisco (a key enzyme of photosynthesis) and cell walls in leaves of 26 species with a large variation in photosynthetic rates. We focused on photosynthetic nitrogen-use efficiency (PNUE, photosynthetic rate per nitrogen), which can be expressed as the product of Rubisco-use efficiency (RBUE, photosynthetic rate per Rubisco) and Rubisco nitrogen fraction (RNF, Rubisco nitrogen per total leaf nitrogen). RBUE accounted for 70% of the interspecific variation in PNUE. The variation in RBUE was ascribed partly to stomatal conductance, and other factors such as mesophyll conductance and Rubisco kinetics might also be involved. RNF was also significantly related to PNUE but the correlation was relatively weak. Cell wall nitrogen fraction (WNF, cell wall nitrogen per total leaf nitrogen) increased with increasing leaf mass per area, but there was no correlation between RNF and WNF. These results suggest that nitrogen allocation to cell walls does not explain the variation in PNUE. The difference in PNUE was not caused by a sole factor that was markedly different among species but by several factors each of which was slightly disadvantageous in low PNUE species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
This study investigates factors determining variation in photosynthetic nitrogen use efficiency (φN) in seven slow- and fast-growing Poa species from altitudinally contrasting sites. The species and their environmental origin were (in order of increasing relative growth rate): two alpine (Poa fawcettiae and P. costiniana), one sub-alpine (P. alpina) and three temperate lowland perennials (P. pratensis, P. compressa and P. trivialis), as well as one temperate lowland annual (P. annua). Plants were grown hydroponically under identical conditions with free access to nutrients in a growth room. Photosynthesis per unit leaf area measured at growth irradiance (500 μmol m−2 s−1) was slightly higher in the slow-growing alpine species. At saturating light intensities, photosynthesis was considerably higher in the alpine species than in the lowland species. Carboxylation capacity and Rubisco content per unit leaf area were also greater in the alpine species. Despite variation between the species, the in vivo specific activity of Rubisco showed little relationship to relative growth rate or photosynthetic rate. Both at light saturation and at the growth irradiance, φN was lowest in the slow-growing alpine species P. fawcettiae, P. costiniana and P. alpina, and highest in the fast-growing P. compressa and P. annua. The proportion of leaf nitrogen that was allocated to photosynthetic capacity and the in vivo catalytic constant of Rubisco accounted for most of the variation in φN at light saturation. Minor variations in intercellular CO2 partial pressure also contributed to some extent to the variations in φN at light saturation. The low φN values at growth irradiance exhibited by the alpine species were additionally due to a lower percentage utilisation of their high photosynthetic capacity compared to the lowland species. Received: 28 May 1998 / Accepted: 28 March 1999  相似文献   

7.
We grew velvetleaf (Abutilon theophrasti Medic.) and cotton (Gossypium hirsutum L. var. Stoneville 213) at three irradiances and determined the photosynthetic responses of single leaves to a range of six irradiances from 90 to 2000 μeinsteins m−2sec−1. In air containing 21% O2, velvetleaf and cotton grown at 750 μeinsteins m−2sec−1 had maximum photosynthetic rates of 18.4 and 21.9 mg of CO2 dm−2hr−1, respectively. Maximum rates for leaves grown at 320 and 90 μeinsteins m−2sec−1 were 15.3 and 10.3 mg of CO2 dm−2hr−1 in velvetleaf and 12 and 6.7 mg of CO2 dm−2hr−1 in cotton, respectively. In 1 O2, maximum photosynthetic rates were 1.5 to 2.3 times the rates in air containing 21% O2, and plants grown at medium and high irradiance did not differ in rate. In both species, stomatal conductance was not significantly affected by growth irradiance. The differences in maximum photosynthetic rates were associated with differences in mesophyll conductance. Mesophyll conductance increased with growth irradiance and correlated positively with mesophyll thickness or volume per unit leaf area, chlorophyll content per unit area, and photosynthetic unit density per unit area. Thus, quantitative changes in the photosynthetic apparatus help account for photosynthetic adaptation to irradiance in both species. Net assimilation rates calculated for whole plants by mathematical growth analysis were closely correlated with single-leaf photosynthetic rates.  相似文献   

8.
The great damage caused by native invasive species on natural ecosystems is prompting increasing concern worldwide. Many studies have focused on exotic invasive species. In general, exotic invasive plants have higher resource capture ability and utilization capacity, and lower leaf construction cost (CC) compared to noninvasive plants. However, the physiological mechanisms that determine the invasiveness of native plants are poorly understood. We hypothesized that native invaders, like exotic invaders, may have higher resource capture ability and utilization efficiency compared to native noninvaders. To test this hypothesis, ecophysiological traits including light-saturated photosynthetic rate (Amax), specific leaf area (SLA), photosynthetic nitrogen use-efficiency (PNUE), photosynthetic energy-use efficiency (PEUE), and mass-based and area-based leaf construction cost (CCmass and CCarea) were measured. We compared the above traits between three pairs of native invasive and noninvasive native species, and between three pairs of exotic invasive and noninvasive species in Guangzhou, southern China. Our results showed that the native invaders had higher Amax, SLA, PNUE, PEUE and lower CCmass, CCarea, compared to native noninvaders and that these traits were also found in the exotic invaders. PNUE and PEUE in the native invaders were 150.3 and 129.0% higher, respectively, than in noninvasive native species, while these same measures in exotic invaders were 43.0 and 94.2% higher, respectively, than in exotic noninvasive species. The results indicated that native invaders have higher resource capture ability and resource utilization efficiency, suggesting that these traits may be a common biological foundation underlying successful invasion by both native and exotic invasives.  相似文献   

9.
《Acta Oecologica》2007,31(1):40-47
We tested the hypotheses that invasive species had higher irradiance plasticity, capture ability and efficiency than noninvasive species using two invasive aliens – Ageratina adenophora and Chromolaena odorata, and one noninvasive alien – Gynura sp. The three aliens were grown at 4.5%, 12.5%, 36%, 50% and 100% irradiances for 64 days before harvesting. The plastic response of specific leaf area (SLA) contributed to improved light interception at low irradiance, carbon gain and water balance at high irradiance. It was a good predictor for intraspecific irradiance responses of leaf area ratio (LAR), leaf area:root mass ratio, maximum photosynthetic rate (Pmax) and net assimilation rate (NAR). Biomass allocation-related traits were species specific and their plasticity to irradiance was low. The high root mass fraction, leaf mass fraction and LAR distinguished the two invaders from Gynura. However, other resource capture-related traits, such as SLA, NAR and Pmax, were not always higher for the invaders than for Gynura. Furthermore, plasticity to irradiance was not different between the invasive and noninvasive aliens. With increasing irradiance, Gynura decreased biomass investment to roots and leaves but increased the investment to support structures adversely affecting both low and high irradiance acclimation. Ageratina might invade new habitat successfully through tolerating shading at low irradiance and outshading competitors by forming dense stands when irradiance is increased. The results suggested that both resource capture-related traits and irradiance acclimation conferred competitive advantage to the two invaders and some traits were common for invasive and noninvasive aliens but others were specific for invaders.  相似文献   

10.
The spatial patterns of photosynthetic characteristics and leaf physical traits of 171 plants belonging to nine life-forms or functional groups (trees, shrubs, herbs, evergreen trees, deciduous trees, C3 and C4 herbaceous plants, leguminous and non-leguminous species) and their relationships with environmental factors in seven sites, Yangling, Yongshou, Tongchuan, Fuxian, Ansai, Mizhi and Shenmu, ranging from south to north in the Loess Plateau of China were studied. The results showed that the leaf light-saturated photosynthetic rate (Pmax), photosynthetic nitrogen use efficiency (PNUE), chlorophyll content (Chl), and leaf mass per area (LMA) of all the plants in the Loess Plateau varied significantly among three life-form groups, i.e., trees, shrubs and herbs, and two groups, i.e., evergreen trees and deciduous trees, but leaf nitrogen content differed little among different life-form groups. For the 171 plants in the Loess Plateau, leaf Pmax was positively correlated with PNUE. The leaf nitrogen content per unit area (Narea) was positively correlated but Chl was negatively correlated with the LMA. When controlling the LMA, the Narea was positively correlated with the Chl (partial r = 0.20, P < 0.05). With regard to relationships between photosynthetic characteristics and leaf physical traits, the Pmax was positively correlated with N area, while the PNUE was positively correlated with the Chl and negatively correlated with the Narea and LMA. For all the species in the Loess Plateau, the PNUE was negatively correlated with the latitude and annual solar radiation (ASR), but positively correlated with the mean annual rainfall (MAR) and mean annual temperature (MAT). With regard to the leaf physical traits, the leaf Chl was negatively correlated with the latitude and ASR, but positively correlated with the MAR and MAT. However, the Narea and LMA were positively correlated with the latitude and ASR, but negatively correlated with the MAR and MAT. In general, leaf Narea and LMA increased, while PNUE and Chl decreased with increases in the latitude and ASR and decreases in MAR and MAT. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

11.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

12.
The ecophysiological traits of acacia and eucalypt are important in assessing their suitability for afforestation. We measured the gas-exchange rate, the leaf dry mass per area (LMA) and the leaf nitrogen content of two acacia and four eucalypt species. Relative to the eucalypts, the acacias had lower leaf net photosynthetic rate (P N), lower photosynthetic nitrogen-use efficiency (PNUE), higher water-use efficiency (WUE), higher LMA and higher leaf nitrogen per unit area (N area). No clear differences were observed within or between genera in the maximum rate of carboxylation (V cmax) or the maximum rate of electron transport (J max), although these parameters tended to be higher in eucalypts. PNUE and LMA were negatively correlated. We conclude that acacias with higher LMA do not allocate nitrogen efficiently to photosynthetic system, explaining why their P N and PNUE were lower than in eucalypts.  相似文献   

13.
High nitrogen (N) supply frequently results in a decreased photosynthetic N-use efficiency (PNUE), which indicates a less efficient use of accumulated Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Chloroplasts are the location of Rubisco and the endpoint of CO2 diffusion, and they play a vital important role in photosynthesis. However, the effects of chloroplast development on photosynthesis are poorly explored. In the present study, rice seedlings (Oryza sativa L., cv. ‘Shanyou 63’, and ‘Yangdao 6’) were grown hydroponically with three different N levels, morphological characteristics, photosynthetic variables and chloroplast size were measured. In Shanyou 63, a negative relationship between chloroplast size and PNUE was observed across three different N levels. Here, plants with larger chloroplasts had a decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and a lower Rubisco specific activity. In Yangdao 6, there was no change in chloroplast size and no decline in PNUE or gm/Rubisco ratio under high N supply. It is suggested that large chloroplasts under high N supply is correlated with the decreased Rubisco specific activity and PNUE.  相似文献   

14.
太岳山典型阔叶乔木冠层叶片性状的分布格局   总被引:1,自引:1,他引:0  
以太岳山4种阔叶乔木不同冠层高度的叶片为研究对象,用LI-3000A叶面积仪和Li-6400便携式光合作用测定系统分别测定了这4种乔木不同冠层高度叶片的叶面积大小和单位面积的叶光饱和速率(Aarea);同时测定了其叶氮含量;计算了其比叶面积(SLA)、单位面积叶氮含量(Narea)、单位重量叶氮含量(Nmass)、单位重量的叶光饱和速率(Amass)和光合氮素利用效率(PNUE),对植株不同冠层高度叶片的SLA、叶氮和光合特性的空间分布格局进行了比较研究,结果表明:Aarea、Amass、Nmass、PNUE、SLA和Narea在树冠上层、中层和下层的差异均达到了极显著水平(P<0.001),表明树冠不同高度的叶片性状参数差异较大;在相同SLA下,Nmass和Narea在冠层中的分布均表现为中层>上层>下层,并出现平行位移现象;Aarea和Nmass都以中层值最大,表明冠层光合能力分布格局以中层相对较高。  相似文献   

15.
To test the hypothesis that mesophyll conductance (gm) would be reduced by leaf starch accumulation in plants grown under elevated CO2 concentration [CO2], we investigated gm in seedlings of Japanese white birch grown under ambient and elevated [CO2] with an adequate and limited nitrogen supply using simultaneous gas exchange and chlorophyll fluorescence measurements. Both elevated [CO2] and limited nitrogen supply decreased area‐based leaf N accompanied with a decrease in the maximum rate of Rubisco carboxylation (Vc,max) on a CO2 concentration at chloroplast stroma (Cc) basis. Conversely, only seedlings grown at elevated [CO2] under limited nitrogen supply had significantly higher leaf starch content with significantly lower gm among the treatment combinations. Based on a leaf anatomical analysis using microscopic photographs, however, there were no significant difference in the area of chloroplast surfaces facing intercellular space per unit leaf area among treatment combinations. Thicker cell walls were suggested in plants grown under limited N by increases in leaf mass per area subtracting non‐structural carbohydrates. These results suggest that starch accumulation and/or thicker cell walls in the leaves grown at elevated [CO2] under limited N supply might hinder CO2 diffusion in chloroplasts and cell walls, which would be an additional cause of photosynthetic downregulation as well as a reduction in Rubisco activity related to the reduced leaf N under elevated [CO2].  相似文献   

16.
Some plant species show constant rates of respiration and photosynthesismeasured at their respective growth temperatures (temperaturehomeostasis), whereas others do not. However, it is unclearwhat species show such temperature homeostasis and what factorsaffect the temperature homeostasis. To analyze the inherentability of plants to acclimate respiration and photosynthesisto different growth temperatures, we examined 11 herbace-ouscrops with different cold tolerance. Leaf respiration (Rarea)and photosynthetic rate (Parea) under high light at 360 µll–1 CO2 concentrations were measured in plants grown at15 and 30°C. Cold-tolerant species showed a greater extentof temperature homeostasis of both Rarea and Parea than cold-sensitivespecies. The underlying mechanisms which caused differencesin the extent of temperature homeostasis were examined. Theextent of temperature homeostasis of Parea was not determinedby differences in leaf mass and nitrogen content per leaf area,but by differences in photosynthetic nitrogen use efficiency(PNUE). Moreover, differences in PNUE were due to differencesin the maximum catalytic rate of Rubisco, Rubisco contents andamounts of nitrogen invested in Rubisco. These findings indicatedthat the temperature homeostasis of photosynthesis was regulatedby various parameters. On the other hand, the extent of temperaturehomeostasis of Rarea was unrelated to the maximum activity ofthe respiratory enzyme (NAD-malic enzyme). The Rarea/Parea ratiowas maintained irrespective of the growth temperatures in allthe species, suggesting that the extent of temperature homeostasisof Rarea interacted with the photosynthetic rate and/or thehomeostasis of photosynthesis.  相似文献   

17.
Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m−2 a−1. While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A max), carboxylation (V cmax), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A max for C. calyculata, and higher V cmax in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH4) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.  相似文献   

18.
Noriyuki Osada 《Plant Ecology》2013,214(12):1493-1504
The theory of optimal nitrogen (N) distribution predicts that the carbon gain of plants will be maximised when leaves of higher irradiance have higher N content per area (N area). Most previous studies have examined optimal N distribution without explicitly considering the branching status of plants. I investigated light environment, N distribution and photosynthetic traits of individual leaves of an herbaceous species, Xanthium canadense. X. canadense was grown solitary under high (HN) and low nutrients (LN). Light availability, leaf mass per unit area and N area were measured for all leaves within plants. Daily photosynthesis of the plants of actual N distribution was compared with those of optimal and constant N distribution. Branch production was facilitated in HN but not in LN plants. N area was correlated more with leaf order than with leaf light environment. Although N was more limited and the light environment was less heterogeneous within crowns in LN than in HN plants, leaf N distribution was closer to optimal in the latter. These results suggest that leaf N distribution was not optimised in solitary plants of X. canadense. Because this species often regenerates in a dense stand, leaf N distribution might be selected to maximise carbon gain only in such a stand. Leaf N distribution might thus be constrained by the regeneration strategy of the species.  相似文献   

19.
Summary The effects of irradiance during growth on biomass allocation, growth rates, leaf chlorophyll and protein contents, and on gas exchange responses to irradiance and CO2 partial pressures of the evergreen, sclerophyllous, chaparral shrub, Ceanothus megacarpus were determined. Plants were grown at 4 irradiances for the growth experiments, 8, 17, 25, 41 nE cm-2 sec-1, and at 2 irradiances, 9 and 50 nE cm-2 sec-1, for the other comparisons.At higher irradiances root/shoot ratios were somewhat greater and specific leaf weights were much greater, while leaf area ratios were much lower and leaf weight ratios were slightly lower than at lower irradiances. Relative growth rates increased with increasing irradiance up to 25 nE cm-2 sec-1 and then leveled off, while unit leaf area rates increased steeply and unit leaf weight rates increased more gradually up to the highest growth irradiance.Leaves grown at 9 nE cm-2 sec-1 had less total chlorophyll per unit leaf area and more per unit leaf weight than those grown at 50 nE cm-2 sec-1. In a reverse of what is commonly found, low irradiance grown leaves had significantly higher chlorophyll a/b than high irradiance grown leaves. High irradiance grown leaves had much more total soluble protein per unit leaf area and per unit dry weight, and they had much higher soluble protein/chlorophyll than low irradiance grown leaves.High irradiance grown leaves had higher rates of respiration in very dim light, required higher irradiances for photosynthetic saturation and had higher irradiance saturated rates of photosynthesis than low irradiance grown leaves. CO2 compensation irradiances for leaves of both treatments were very low, <5 nE cm-2 sec-1. Leaves grown under low and those grown under high irradiances reached 95% of their saturated photosynthetic rates at 65 and 85 nE cm-2 sec-1, respectively. Irradiance saturated rates of photosynthesis were high compared to other chaparral shrubs, 1.3 for low and 1.9 nmol CO2 cm-2 sec-1 for high irradiance grown leaves. A very unusual finding was that leaf conductances to H2O were significantly lower in the high irradiance grown leaves than in the low irradiance grown leaves. This, plus the differences in photosynthetic rates, resulted in higher water use efficiencies by the high irradiance grown leaves. High irradiance grown leaves had higher rates of photosynthesis at any particular intercellular CO2 partial pressure and also responded more steeply to increasing CO2 partial pressure than did low irradiance grown leaves. Leaves from both treatments showed reduced photosynthetic capability after being subjected to low CO2 partial pressures (100 bars) under high irradiances. This treatment was more detrimental to leaves grown under low irradiances.The ecological implications of these findings are discussed in terms of chaparral shrub community structure. We suggest that light availability may be an important determinant of chaparral community structure through its effects on water use efficiencies rather than on net carbon gain.  相似文献   

20.
塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配   总被引:4,自引:0,他引:4       下载免费PDF全文
在豆科与非豆科植物光合特性的研究中发现,非豆科植物具有更高的光合速率,与其低的叶氮含量相矛盾。在沙漠中氮素是限制植物生长的关键因子之一,考虑到豆科植物的生物固氮作用和叶氮大部分分配于光合系统,我们假设:(1)非豆科植物具有更低的叶氮含量;(2)分配更少的叶氮于光合系统;(3)具有更高的最大净光合速率(Pmax)和光合氮素利用效率(PNUE)。为了验证这些假设,以塔克拉玛干沙漠南缘的豆科植物骆驼刺(Alhagi sparsifolia)和非豆科植物柽柳(Tamarix ramosissima)、花花柴(Karelinia caspica)为研究对象,比较了它们的叶氮含量、氮分配、Pmax和PNUE等。结果表明:(1)非豆科植物比豆科植物确实有更低的叶氮含量,且差异达到显著水平;(2)非豆科植物分配更少的叶氮于光合系统,但在光合系统内部具有更高效的氮分配机制;(3)非豆科植物具有更高的Pmax和PNUE。在光合系统内部,非豆科植物分配更多的叶氮于羧化系统,而豆科植物分配更多的叶氮于捕光系统。对于非豆科植物而言,其更高的Pmax、PNUE、水分利用效率和表观量子产量,取决于将更多的叶氮投入到羧化和电子传递系统中。这些生理优势决定了塔克拉玛干沙漠南缘非豆科植物高效的资源捕捉和利用能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号