首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pattern‐triggered immunity (PTI) is broad spectrum and manipulation of PTI is believed to represent an attractive way to engineer plants with broad‐spectrum disease resistance. PTI is activated upon perception of microbe‐associated molecular patterns (MAMPs) by pattern‐recognition receptors (PRRs). We have recently demonstrated that the L‐type lectin receptor kinase‐VI.2 (LecRK‐VI.2) positively regulates Arabidopsis thaliana PTI. Here we show through in vitro pull‐down, bimolecular fluorescence complementation and co‐immunoprecipitation analyses that LecRK‐VI.2 associates with the PRR FLS2. We also demonstrated that LecRK‐VI.2 from the cruciferous plant Arabidopsis remains functional after interfamily transfer to the Solanaceous plant Nicotiana benthamiana. Wild tobacco plants ectopically expressing LecRK‐VI.2 were indeed more resistant to virulent hemi‐biotrophic and necrotrophic bacteria, but not to the fungal pathogen Botrytis cinerea suggesting that, as with Arabidopsis, the LecRK‐VI.2 protective effect in N. benthamiana is bacteria specific. Ectopic expression of LecRK‐VI.2 in N. benthamiana primed PTI‐mediated reactive oxygen species production, mitogen‐activated protein kinase (MAPK) activity, callose deposition and gene expression upon treatment with the MAMP flagellin. Our findings identified LecRK‐VI.2 as a member of the FLS2 receptor complex and suggest that heterologous expression of components of PRR complexes can be used as tools to engineer plant disease resistance to bacteria.  相似文献   

2.
RenSeq is a NB‐LRR (nucleotide binding‐site leucine‐rich repeat) gene‐targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB‐LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB‐LRRs and can be accessed through a genome browser that we provide. We compared these NB‐LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB‐LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co‐segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi‐ber2) and S. ruiz‐ceballosii (Rpi‐rzc1), we were able to apply RenSeq successfully to identify markers that co‐segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy‐to‐adapt Galaxy pipelines.  相似文献   

3.
Late blight caused by Phytophthora infestans is the most important disease of potato. Many efforts have been made to understand molecular mechanism of the durable resistance to address the challenge raised by rapid evolution of the pathogen. A pathogenesis related protein (PR) gene StPRp27 was previously isolated from the potato leaves challenged by P. infestans. The sequence analysis and expression pattern reveal that StPRp27 may be associated with resistance to P. infestans. In present research, transient expression of StPRp27 in Nicotiana benthamiana enhanced resistance to P. infestans isolates 99189 and PY23 indicating its potential contribution to the disease resistance. These findings were also confirmed by over-expression of StPRp27 in potato cv. E-potato 3, which significantly slowed down the development of the disease after inoculation with a mixture of P. infestans races. Further, silencing of StPRp27 homologous genes in N. benthamiana harboring dominant Phytophthora resistance gene Rpi-blb1 or Rpi-blb2 showed no effects on the resistance triggered by these R genes. Our results suggest that StPRp27 contributes to a race-nonspecific resistance against P. infestans by inhibiting the disease development and has a potential use in selection and breeding for durable resistance to late blight.  相似文献   

4.
Prior to 2007, late blight was not reported as a serious threat to tomato cultivation in India although the disease has been known on potato since 1953. During the July–December cropping season of 2009 and 2010, severe late blight epidemics were observed in Karnataka state of India, causing crop losses up to 100%. Nineteen Phytophthora isolates, recovered from late blight affected tomato tissues from different localities in Karnataka state between 2009 and 2010, were identified as Phytophthora infestans based on morphology, a similarity search of ITS sequences at GenBank and species‐specific PCR using PINF/ITS5 primer pair. The isolates were further assessed for metalaxyl sensitivity, mating type, mitochondrial DNA (mtDNA) haplotype, DNA fingerprinting patterns based on simple sequence repeats (SSR) and RFLPs using the RG57 probe and aggressiveness on tomato. All isolates were metalaxyl resistant, A2 mating type, mtDNA haplotype Ia and had identical SSR and RG57 fingerprints and highly aggressive on tomato. The phenotypic and genotypic characters of isolates examined in this study were found to be similar to that of 13_A2 genotype of P. infestans population reported in Europe. Thus, appearance of new population similar to 13_A2 genotype was responsible for severe late blight epidemics on tomato in South‐West India.  相似文献   

5.
Many Gram‐negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector‐triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co‐expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR‐NB‐LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium‐mediated protein expression experiments in wild‐type and EDS1‐deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ‐mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium‐mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co‐expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.  相似文献   

6.
7.
Non‐host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre‐ and post‐invasive resistance responses. Pre‐invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non‐host resistance to P. infestans, a genetic screen was performed by re‐mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2‐1 erp1‐3 and pen2‐1 erp1‐4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T‐DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen‐inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non‐autonomous defense responses against invasive filamentous pathogens.  相似文献   

8.
Migrations or introduction of new genotypes of Phytophthora infestans to a specific region imposes a different perspective for potato production. During 2009–2010, a late blight epidemic affected the Northeastern United States, which quickly spread through several states. The epidemic was characterized by the appearance of a new genotype of P. infestans designated US‐22, which was isolated from tomato and potato. Potato tubers are an essential component of late blight epidemics where the pathogen cannot overwinter on Solanaceous plants. Six potato cultivars were inoculated with 12 isolates of P. infestans (five different genotypes), including isolates of the genotype US‐22. Tuber blight development was characterized in terms of tissue darkening expressed as area under the disease progress curve values and lenticel infection. The responses indicated that US‐8 was more aggressive than US‐22, but US‐22 isolates obtained from potato were more aggressive on potato than those acquired from tomato. Tuber periderm responses to infection were limited, yet US‐8 isolates infected the periderm more often than US‐22 isolates. There were significant differences among the cultivars tested but cv. Jacqueline Lee was the most resistant overall. Although isolates of P. infestans genotype US‐22 were less aggressive in comparison with US‐8 isolates, US‐22 isolates still infected potato tubers and were as aggressive us US‐8 isolates on some cultivars. Management of late blight caused by isolates of US‐22 through host resistance may be feasible but imposes a different set of criteria for consideration from those that US‐8 imposed.  相似文献   

9.
We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane‐anchored leucine‐rich repeat receptor‐like protein (LRR‐RLP). Unlike most other LRR‐RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR‐RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR‐RLPs, recognition specificity is determined in the C‐terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1‐dependent necrosis in Nicotiana benthamiana depends on the LRR receptor‐like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR‐RLPs involved in plant defence all carry residues in their last LRR and C‐terminal LRR capping domain that are conserved with SERK3/BAK1‐interacting residues in the same relative positions in the LRR‐RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1‐dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.  相似文献   

10.
The most significant threat to potato production worldwide is the late blight disease, which is caused by the oomycete pathogen Phytophthora infestans. Based on previous cDNA microarrays and cDNA-amplified fragment length polymorphism analysis, 63 candidate genes that are expected to contribute to developing a durable resistance to late blight were selected for further functional analysis. We performed virus-induced gene silencing (VIGS) to these candidate genes on both Nicotiana benthamiana and potato, subsequently inoculated detached leaves and assessed the resistance level. Ten genes decreased the resistance to P. infestans after VIGS treatment. Among those, a lipoxygenase (LOX; EC 1.13.11.12) and a suberization-associated anionic peroxidase affected the resistance in both N. benthamiana and potato. Our results identify genes that may play a role in quantitative resistance mechanisms to late blight.  相似文献   

11.
12.
Plants are exposed to microbial pathogens as well as herbivorous insects and their natural enemies. Here, we examined the effects of inoculation of potato plants, Solanum tuberosum L. (Solanaceae), with the late blight pathogen Phytophthora infestans (Mont.) de Bary (Peronosporales: Pythiaceae) on an aphid species commonly infesting potato crops and one of the aphid's major parasitoids. We observed the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and its natural enemy, the biocontrol agent Aphidius colemani Viereck (Hymenoptera: Braconidae), on potato either inoculated with water or P. infestans. Population growth of the aphid, parasitism rate of its natural enemy, and other insect life‐history traits were compared on several potato genotypes, the susceptible cultivar Désirée and genetically modified (GM) isogenic lines carrying genes conferring resistance to P. infestans. Effects of P. infestans inoculation on the intrinsic rate of aphid population increase and the performance of the parasitoid were only found on the susceptible cultivar. Insect traits were similar when comparing inoculated with non‐inoculated resistant GM genotypes. We also tested how GM‐plant characteristics such as location of gene insertion and number of R genes could influence non‐target insects by comparing insect performance among GM events. Different transformation events leading to different positions of R‐gene insertion in the genome influenced aphids either with or without P. infestans infection, whereas effects of position of R‐gene insertion on the parasitoid A. colemani were evident only in the presence of inoculation with P. infestans. We conclude that it is important to study different transformation events before continuing with further stages of risk assessment of this GM crop. This provides important information on the effects of plant resistance to a phytopathogen on non‐target insects at various trophic levels.  相似文献   

13.
14.
Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%–30% annual yield loss in sub‐Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi‐blb2 from Solanum bulbocastanum and Rpi‐vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R‐gene stack from the potato varieties ‘Desiree’ and ‘Victoria’ grew normally without showing pathogen damage and without any fungicide spray, whereas their non‐transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long‐lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from ‘Desiree’ and ‘Victoria’ grown without fungicide to reflect small‐scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four‐fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers’ preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub‐Saharan Africa.  相似文献   

15.
16.
Leucine‐rich repeat receptor‐like proteins (LRR‐RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race‐specific R‐genes, including the LRR‐RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line ‘Glacier DH24287’ was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR‐RLP locus, conveying race‐specific resistance to L. maculans isolates harbouring AvrLm2. Several defence‐related LRR‐RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co‐immunoprecipitation of RLM2‐SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co‐expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.  相似文献   

17.
18.

Background

The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae), such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs), contributes to P. infestans resistance.

Principal Findings

We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction) to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK) BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI) in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs.

Conclusions/Significance

We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.  相似文献   

19.
Nonhost resistance (NHR) is a robust plant immune response against non-adapted pathogens. A number of nucleotide-binding leucine-rich repeat (NLR) proteins that recognize non-adapted pathogens have been identified, although the underlying molecular mechanisms driving robustness of NHR are still unknown. Here, we screened 57 effectors of the potato late blight pathogen Phytophthora infestans in nonhost pepper (Capsicum annuum) to identify avirulence effector candidates. Selected effectors were tested against 436 genome-wide cloned pepper NLRs, and we identified multiple functional NLRs that recognize P. infestans effectors and confer disease resistance in the Nicotiana benthamiana as a surrogate system. The identified NLRs were homologous to known NLRs derived from wild potatoes that recognize P. infestans effectors such as Avr2, Avrblb1, Avrblb2, and Avrvnt1. The identified CaRpi-blb2 is a homologue of Rpi-blb2, recognizes Avrblb2 family effectors, exhibits feature of lineage-specifically evolved gene in microsynteny and phylogenetic analyses, and requires pepper-specific NRC (NLR required for cell death)-type helper NLR for proper function. Moreover, CaRpi-blb2–mediated hypersensitive response and blight resistance were more tolerant to suppression by the PITG_15 278 than those mediated by Rpi-blb2. Combined results indicate that pepper has stacked multiple NLRs recognizing effectors of non-adapted P. infestans, and these NLRs could be more tolerant to pathogen-mediated immune suppression than NLRs derived from the host plants. Our study suggests that NLRs derived from nonhost plants have potential as untapped resources to develop crops with durable resistance against fast-evolving pathogens by stacking the network of nonhost NLRs into susceptible host plants.  相似文献   

20.
RNA silencing is one of the main defence mechanisms employed by plants to fight pathogens. p19 protein encoded by the tomato bushy stunt virus (TBSVp19) is known as a suppressor of RNA silencing via siRNA sequestration to prevent the assembly of RISC. To better understand the impact of TBSVp19 on silencing and its roles in Phytophthora pathogens, we used the transient expression assay in Nicotiana benthamiana and found that the leaves expressing TBSVp19 were more susceptible to Phytophthora parasitica. Furthermore, we demonstrated that TBSVp19‐mediated plant susceptibility in N. benthamiana is dependent on RNA‐dependent RNA polymerase 6 (RDR6). We also tested the role of RNA silencing in resistance of soybean hairy roots to Phytophthora. The lesion size induced by P. sojae on TBSVp19‐expressing soybean hairy roots was slightly, but significantly larger than GFP‐expressing soybean hairy roots. Finally, the Arabidopsis gene silencing mutants ago1‐27, zip‐1, sgs3‐11 and rdr6‐11 were also examined for their resistance to P. parasitica. The results clearly showed that resistance levels of the mutants were visibly reduced compared with the wild type. Taken together, these results suggest that the gene silencing system in plants is essential for resistance to Phytophthora pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号