首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Although F1 female hybrids between Anopheles gambiae and A. arabiensis are fully fertile, sterility is present in backcross females. Here we report the results of a study into the genetic basis of backcross female sterility. Using 23 markers, we performed quantitative trait loci (QTL) mapping analyses to identify chromosomal regions involved in hybrid female sterility. We found that female sterility in backcrosses in both directions is primarily caused by interspecific interactions between a heterozygous X chromosome and recessive autosomal factors. In addition, our data provide support for two theories implicated in Haldane's rule in a single taxon. A comparison with data from a previous study shows that male hybrid sterility QTL are present in higher numbers than female hybrid sterility QTL. Furthermore, autosomal female sterility factors tend to be recessive, supporting the dominance theory for female sterility. Finally, our data indicate a very large effect of the X chromosome from both species on hybrid female sterility, despite the fact that the X chromosome represents less than 9% of the genome. However, this could be the result of a lack of introgression of the X chromosome between A. gambiae and A. arabiensis, rather than a faster evolution of sterility factors on the X chromosome.  相似文献   

2.
H. Hollocher  C. I. Wu 《Genetics》1996,143(3):1243-1255
A strong effect of homozygous autosomal regions on reproductive isolation was found for crosses between the species in the Drosophila simulans clade. Second chromosome regions were introgressed from D. mauritiana and D. sechellia into D. simulans and tested for their homozygous effects on hybrid male and hybrid female sterility and inviability. Most introgressions are fertile as heterozygotes, yet produce sterile male offspring when made homozygous. The density of homozygous autosomal factors contributing to hybrid male sterility is comparable to the density of X chromosome factors for this level of resolution. Female sterility was also revealed, yet the disparity between male and female levels of sterility was great, with male sterility being up to 23 times greater than female sterility. Complete hybrid inviability was also associated with some regions of the second chromosome, yet there were no strong sex differences. In conclusion, we find no evidence to support a strong X chromosome bias in the evolution of hybrid sterility or inviability but do find a very strong sex bias in the evolution of hybrid sterility. In light of these findings, we reevaluate the current models proposed to explain the genetic pattern of reproductive isolation.  相似文献   

3.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

4.
In hybrids between the sibling species D. buzzatii and D. koepferae, both sexes are more or less equally viable in the F1: However, backcross males to D. buzzatii are frequently inviable, apparently because of interspecific genetic incompatibilities that are cryptic in the F1. We have performed a genetic dissection of the effects of the X chromosome from D. koepferae. We found only two cytological regions, termed hmi-1 and hmi-2, altogether representing 9% of the whole chromosome, which when introgressed into D. buzzatii cause inviability of hybrid males. Observation of the pattern of asynapsis of polytene chromosomes (incomplete pairing, marking introgressed material) in females and segregation analyses were the technique used to infer the X chromosome regions responsible for this hybrid male inviability. The comparison of these results with those previously obtained with the same technique for hybrid male sterility in this same species pair indicate that in the X chromosome of D. koepferae there are at least seven times more regions that produce hybrid male sterility than hybrid male inviability. We have also found that the inviability brought about by the introgression of hmi-1 is suppressed by the cointrogression of two autosomal sections from D. koepferae. Apparently, these three regions conform to a system of species-specific complementary factors involved in an X-autosome interaction that, when disrupted in backcross hybrids by recombination with the genome of its sibling D. buzzatii, brings about hybrid male inviability.  相似文献   

5.
A major unresolved challenge of evolutionary biology is to determine the nature of the allelic variants of "speciation genes": those alleles whose interaction produces inviable or infertile interspecific hybrids but does not reduce fitness in pure species. Here we map quantitative trait loci (QTL) affecting fertility of male hybrids between D. yakuba and its recently discovered sibling species, D. santomea. We mapped three to four X chromosome QTL and two autosomal QTL with large effects on the reduced fertility of D. yakuba and D. santomea backcross males. We observed epistasis between the X-linked QTL and also between the X and autosomal QTL. The X chromosome had a disproportionately large effect on hybrid sterility in both reciprocal backcross hybrids. However, the genetics of hybrid sterility differ between D. yakuba and D. santomea backcross males, both in terms of the magnitude of main effects and in the epistatic interactions. The QTL affecting hybrid fertility did not colocalize with QTL affecting sexual isolation in this species pair, but did colocalize with QTL affecting the marked difference in pigmentation between D. yakuba and D. santomea. These results provide the basis for future high-resolution mapping and ultimately, molecular cloning, of the interacting genes that contribute to hybrid sterility.  相似文献   

6.
Hybrid male sterility, hybrid inviability, sexual isolation, and a hybrid male courtship dysfunction reproductively isolate Drosophila pseudoobscura and D. persimilis. Previous studies of the genetic bases of these isolating mechanisms have yielded only limited information about how much and what areas of the genome are susceptible to interspecies introgression. We have examined the genetic basis of these barriers to gene exchange in several thousand backcross hybrid male progeny of these species using 14 codominant molecular genetic markers spanning the five chromosomes of these species, focusing particularly on the autosomes. Hybrid male sterility, hybrid inviability, and the hybrid male courtship dysfunction were all associated with X-autosome interactions involving primarily the inverted regions on the left arm of the X-chromosome and the center of the second chromosome. Sexual isolation from D. pseudoobscura females was primarily associated with the left arm of the X-chromosome, although both the right arm and the center of the second chromosome also contributed to it. Sexual isolation from D. persimilis females was primarily associated with the second chromosome. The absence of isolating mechanisms being associated with many autosomal regions, including some large inverted regions that separate the strains, suggests that these phenotypes may not be caused by genes spread throughout the genome. We suggest that gene flow between these species via hybrid males may be possible at loci spread across much of the autosomes.  相似文献   

7.
H. Allen Orr 《Genetics》1987,116(4):555-563
The genetic basis of male and female sterility in hybrids of Drosophila pseudoobscura-Drosophila persimilis was studied using backcross analysis. Previous studies indirectly assessed male fertility by measuring testis size; these studies concluded that male sterility results from an X chromosome-autosome imbalance. By directly scoring for the production of motile sperm, male sterility is shown to be largely due to an incompatibility between genes on the X and Y chromosomes of these two species. These species have diverged at a minimum of nine loci affecting hybrid male fertility. Semisterility of hybrid females appears to result from an X chromosome-cytoplasm interaction; the X chromosome thus has the largest effect on sterility in both male and female hybrids. This is apparently the first analysis of the genetic basis of female sterility, or of sterility/inviability affecting both sexes, in an animal hybridization.  相似文献   

8.
Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule—the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect—substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60%) whereas few autosomal introgressions do (18%). Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility.  相似文献   

9.
The Genetics of Postzygotic Isolation in the Drosophila Virilis Group   总被引:8,自引:7,他引:1  
H. A. Orr  J. A. Coyne 《Genetics》1989,121(3):527-537
In a genetic study of postzygotic reproductive isolation among species of the Drosophila virilis group, we find that the X chromosome has the largest effect on male and female hybrid sterility and inviability. The X alone has a discernible effect on postzygotic isolation between closely related species. Hybridizations involving more distantly related species also show large X-effects, although the autosomes may also play a role. In the only hybridization yet subjected to such analysis, we show that hybrid male and female sterility result from the action of different X-linked loci. Our results accord with genetic studies of other taxa, and support the view that both Haldane's rule (heterogametic F1 sterility or inviability) and the large effect of the X chromosome on reproductive isolation result from the accumulation by natural selection of partially recessive or underdominant mutations. We also describe a method that allows genetic analysis of reproductive isolation between species that produce completely sterile or inviable hybrids. Such species pairs, which represent the final stage of speciation, cannot be analyzed by traditional methods. The X chromosome also plays an important role in postzygotic isolation between these species.  相似文献   

10.
White MA  Steffy B  Wiltshire T  Payseur BA 《Genetics》2011,189(1):289-304
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.  相似文献   

11.
Sexual isolating mechanisms that act before fertilization are often considered the most important genetic barriers leading to speciation in animals. While progress has been made toward understanding the genetic basis of the postzygotic isolating mechanisms of hybrid sterility and inviability, little is known about the genetic basis of prezygotic sexual isolation. Here, we map quantitative trait loci (QTL) contributing to prezygotic reproductive isolation between the sibling species Drosophila santomea and D. yakuba. We mapped at least three QTL affecting discrimination of D. santomea females against D. yakuba males: one X-linked and one autosomal QTL affected the likelihood of copulation, and a second X chromosome QTL affected copulation latency. Three autosomal QTL also affected mating success of D. yakuba males with D. santomea. No epistasis was detected between QTL affecting sexual isolation. The QTL do not overlap between males and females and are not disproportionately concentrated on the X chromosome. There was some overlap in map locations of QTL affecting sexual isolation between D. santomea and D. yakuba with QTL affecting sexual isolation between D. simulans and D. mauritiana and with QTL affecting differences in pigmentation between D. santomea and D. yakuba. Future high-resolution mapping and, ultimately, positional cloning, will reveal whether these traits do indeed have a common genetic basis.  相似文献   

12.
Sexual isolating mechanisms that act before fertilization are often considered the most important genetic barriers leading to speciation in animals. While recent progress has been made toward understanding the genetic basis of the postzygotic isolating mechanisms of hybrid sterility and inviability, little is known about the genetic basis of prezygotic sexual isolation. Here, we map quantitative trait loci (QTL) contributing to prezygotic reproductive isolation between the sibling species Drosophila simulans and D. mauritiana. We mapped at least seven QTL affecting discrimination of D. mauritiana females against D. simulans males, three QTL affecting D. simulans male traits against which D. mauritiana females discriminate, and six QTL affecting D. mauritiana male traits against which D. simulans females discriminate. QTL affecting sexual isolation act additively, are largely different in males and females, and are not disproportionately concentrated on the X chromosome: The QTL of greatest effect are located on chromosome 3. Unlike the genetic components of postzygotic isolation, the loci for prezygotic isolation do not interact epistatically. The observation of a few QTL with moderate to large effects will facilitate positional cloning of genes underlying sexual isolation.  相似文献   

13.
Chang AS  Bennett SM  Noor MA 《PloS one》2010,5(10):e15377
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.  相似文献   

14.
Sex chromosomes and speciation in Drosophila   总被引:1,自引:0,他引:1  
Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule - the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the 'large X-effect' have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings -- on faster X evolution, X chromosome meiotic drive and the regulation of the X chromosome in the male-germline -- provide plausible evolutionary explanations for the large X-effect.  相似文献   

15.
Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F 1 hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F 1 hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana . We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F 1 hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.  相似文献   

16.
Presgraves DC 《Genetics》2003,163(3):955-972
The sterility and inviability of species hybrids is thought to evolve by the accumulation of genes that cause generally recessive, incompatible epistatic interactions between species. Most analyses of the loci involved in such hybrid incompatibilities have suffered from low genetic resolution. Here I present a fine-resolution genetic screen that allows systematic counting, mapping, and characterizing of a large number of hybrid incompatibility loci in a model genetic system. Using small autosomal deletions from D. melanogaster and a hybrid rescue mutation from D. simulans, I measured the viability of hybrid males that are simultaneously hemizygous for a small region of the D. simulans autosomal genome and hemizygous for the D. melanogaster X chromosome. These hybrid males are exposed to the full effects of any recessive-recessive epistatic incompatibilities present in these regions. A screen of approximately 70% of the D. simulans autosomal genome reveals 20 hybrid-lethal and 20 hybrid-semilethal regions that are incompatible with the D. melanogaster X. In further crosses, I confirm the epistatic nature of hybrid lethality by showing that all of the incompatibilities are rescued when the D. melanogaster X is replaced with a D. simulans X. Combined with information from previous studies, these results show that the number of recessive incompatibilities is approximately eightfold larger than the number of dominant ones. Finally, I estimate that a total of approximately 191 hybrid-lethal incompatibilities separate D. melanogaster and D. simulans, indicating extensive functional divergence between these species' genomes.  相似文献   

17.
Hybrids between D. pseudoobscura bogotana and D. pseudoobscura pseudoobscura are fertile except for males produced in one of the two reciprocal crosses. As there is no premating isolation between these subspecies, nonreciprocal male sterility represents the first step in speciation. Genetic analysis reveals two causes of hybrid F1 sterility: a maternal effect and incompatibilities between chromosomes within males. The maternal effect appears to play the greatest role in hybrid sterility. The X chromosome has the largest effect on fertility of any chromosome, a ubiquitous result in analyses of hybrid sterility and inviability in Drosophila. This effect is entirely attributable to a region comprising less than 30% of the X chromosome. These results are compared to those from a similar study of D. pseudoobscura-D. persimilis hybrids, an older and more reproductively isolated species pair in the same lineage. Such comparisons may allow one to identify the genetic changes characterizing the early versus late stages of speciation.  相似文献   

18.
Good JM  Dean MD  Nachman MW 《Genetics》2008,179(4):2213-2228
The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome.  相似文献   

19.
Sex-linked hybrid sterility in a butterfly   总被引:4,自引:0,他引:4  
Recent studies, primarily in Drosophila, have greatly advanced our understanding of Haldane's rule, the tendency for hybrid sterility or inviability to affect primarily the heterogametic sex (Haldane 1922). Although dominance theory (Turelli and Orr 1995) has been proposed as a general explanation of Haldane's rule, this remains to be tested in female-heterogametic taxa, such as the Lepidoptera. Here we describe a novel example of Haldane's rule in Heliconius melpomene (Lepidoptera; Nymphalidae). Female F1 offspring are sterile when a male from French Guiana is crossed to a female from Panama, but fertile in the reciprocal cross. Male F1s are fertile in both directions. Similar female F1 sterility occurs in crosses between French Guiana and eastern Colombian populations. Backcrosses and linkage analysis show that sterility results from an interaction between gene(s) on the Z chromosome of the Guiana race with autosomal factors in the Panama genome. Large X (or Z) effects are commonly observed in Drosophila, but to our knowledge have not been previously demonstrated for hybrid sterility in Lepidoptera. Differences in the abundance of male versus female or Z-linked versus autosomal sterility factors cannot be ruled out in our crosses as causes of Haldane's rule. Nonetheless, the demonstration that recessive Z-linked loci cause hybrid sterility in a female heterogametic species supports the contention that dominance theory provides a general explanation of Haldane's rule (Turelli and Orr 2000).  相似文献   

20.
Phadnis N 《Genetics》2011,189(3):1001-1009
Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号