首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.  相似文献   

2.
MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the MEKK1-dependent apoptotic pathway, we created mutations within MEKK1. MEKK1-deficient cells were complemented with MEKK1 containing mutations in either the ubiquitin interacting motif (UIM), plant homeodomain (PHD), caspase cleavage site or the kinase domain at near endogenous levels of expression and tested for their sensitivity to each drug. We found that both the kinase activity and the PHD domain of MEKK1 are required for JNK activation and efficient induction of apoptosis by drugs causing cytoskeletal disruption. Furthermore, we discovered that modification of MEKK1 and its localization depends on the integrity of the PHD.  相似文献   

3.
Recently, it has been reported that PHD fingers of MEKK1 kinase and a family of viral and cellular membrane proteins have E3 ubiquitin ligase activity. Here we describe unique sequence and structural signatures that distinguish PHD fingers from RING fingers, which function primarily as E3 ubiquitin ligases, and demonstrate that the Zn-binding modules of the above proteins are distinct versions of the RING domain rather than PHD fingers. Thus, currently available data reveal extreme versatility of RINGs and their derivatives that function as E3 ubiquitin ligases but provide no evidence of this activity among PHD fingers whose principal function appears to involve specific protein-protein and possibly protein-DNA interactions in chromatin.  相似文献   

4.
The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.  相似文献   

5.
MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that can regulate the c-Jun amino-terminal kinase (JNK) MAP kinase cascade. MEKK1 is comprised of a kinase domain and a long amino-terminal regulatory domain. This amino-terminal domain has a scaffold function in that it can assemble modules of the JNK and ERK MAP kinase cascades. Recently, we have demonstrated that MEKK1 binds to p115 Rho GTPase-activating protein, which has GTPase-activating protein activity toward RhoA. Thus, we tested whether Rho GTPases interact with the regulatory domain of MEKK1. RhoA, but not Rac or Cdc42, binds to a site in the aminoterminal one-third of MEKK1, which includes its PHD domain. The interaction is prevented by mutation of the essential cysteine in the MEKK1 PHD domain. Rho-GTP stimulates the kinase activity of full-length MEKK1 as much as 10-fold toward MEK4 but does not appear to be ubiquitinated by MEKK1 under conditions that result in modification of ERK2. In summary, we have characterized a novel point at which Rho GTPases impinge upon the regulation and function of MEKK1.  相似文献   

6.
PHD domains and E3 ubiquitin ligases: viruses make the connection   总被引:9,自引:0,他引:9  
PHD domains constitute a widely distributed subfamily of zinc fingers whose biochemical functions have been unclear until now. Recently, several PHD-containing viral proteins have been identified that promote immune evasion by downregulating proteins that govern immune recognition. Studies show that these viral regulators lead to ubiquitination of their targets by functioning as E3 ubiquitin ligases -- an activity that requires the PHD motif. These are the first examples linking the PHD domain to E3 activity, but the recent discovery of PHD-dependent E3 activity in the cellular kinase MEKK1 and the close structural relation of PHD domains to RING fingers hint that many other PHD proteins might share this activity.  相似文献   

7.
8.
Recently, it has been claimed that PHD fingers of MEKK1 kinase and a family of viral and cellularl membrane proteins have E3 ubiquitin ligase activity. Here we describe unique sequence and structural signatures that distinguish PHD fingers from RING fingers, which function primarily as E3 ubiquitin ligases, and demonstrate that the Zn-binding modules of the above proteins are distinct versions of the RING domains rather than PHD fingers. Thus, currently available data reveal extreme versatility of RINGs and their derivatives as E3 ubiquitin ligases but provide no evidence of this activity among PHD fingers whose principal function appears to involve specific protein-protein and possibly protein-DNA interactions in chromatin.  相似文献   

9.
10.
The extracellular signal‐regulated kinase (ERK) pathway is an important signalling pathway that regulates a large number of cellular processes, including proliferation, differentiation and gene expression. Hyperosmotic stress activates the ERK pathway, whereas little is known about the regulatory mechanisms and physiological functions of ERK activation in hyperosmotic response. Here, we show that MAPK/ERK kinase kinase 2 (MEKK2), a member of the MAPKKK family, mediated the specific and transient activation of ERK, which was required for the induction of aquaporin 1 (AQP1) and AQP5 gene expression in response to hyperosmotic stress. Moreover, we identified the E3 ubiquitin ligase carboxyl terminus of Hsc70‐interacting protein (CHIP) as a binding partner of MEKK2. Depletion of CHIP by small‐interference RNA or gene targeting attenuated the degradation of MEKK2 and prolonged the ERK activity. Interestingly, hyperosmolality‐induced gene expression of AQP1 and AQP5 was suppressed by CHIP depletion and was reversed by inhibition of the prolonged phase of ERK activity. These findings show that transient activation of the ERK pathway, which depends not only on MEKK2 activation, but also on CHIP‐dependent MEKK2 degradation, is crucial for proper gene expression in hyperosmotic stress response.  相似文献   

11.
12.
MEKK2 and MEK5 encode Phox/Bem1p (PB1) domains that heterodimerize with one another. MEKK2, MEK5, and extracellular signal-related kinase 5 (ERK5) form a ternary complex through interactions involving the MEKK2 and MEK5 PB1 domains and a 34-amino-acid C-terminal extension of the MEK5 PB1 domain. This C-terminal extension encodes an ERK5 docking site required for MEK5 activation of ERK5. The PB1 domains bind in a front-to-back arrangement, with a cluster of basic amino acids in the front of the MEKK2 PB1 domain binding to the back-end acidic clusters of the MEK5 PB1 domain. The C-terminal moiety, including the acidic cluster of the MEKK2 PB1 domain, is not required for MEK5 binding and binds MKK7. Quiescent MEKK2 preferentially binds MEK5, and MEKK2 activation results in ERK5 activation. Activated MEKK2 binds and activates MKK7, leading to JNK activation. The findings define how the MEKK2 and MEK5 PB1 domains are uniquely used for differential binding of two mitogen-activated protein kinase kinases, MEK5 and MKK7, for the coordinated control of ERK5 and c-Jun N-terminal kinase activation.  相似文献   

13.
14.
Kaposi's sarcoma associated-herpes virus encodes two proteins, MIR (modulator of immune recognition) 1 and 2, which are involved in the evasion of host immunity. MIR1 and 2 have been shown to function as an E3 ubiquitin ligase for immune recognition-related molecules (e.g. major histocompatibility complex class I, B7-2, and ICAM-1) through the BKS (bovine herpesvirus 4, Kaposi's sarcoma associated-herpes virus, and Swinepox virus) subclass of plant homeodomain (PHD) domain, termed the BKS-PHD domain. Here we show that the human genome also encodes a novel BKS-PHD domain-containing protein that functions as an E3 ubiquitin ligase and whose putative substrate is the B7-2 co-stimulatory molecule. This novel E3 ubiquitin ligase was designated as c-MIR (cellular MIR) based on its functional and structural similarity to MIR1 and 2. Forced expression of c-MIR induced specific down-regulation of B7-2 surface expression through ubiquitination, rapid endocytosis, and lysosomal degradation of the target molecule. This specific targeting was dependent upon the binding of c-MIR to B7-2. Replacing the BKS-PHD domain of MIR1 with the corresponding domain of c-MIR did not alter MIR1 function. The discovery of c-MIR, a novel E3 ubiquitin ligase, highlights the possibility that viral immune regulatory proteins originated in the host genome and presents unique functions of BKS-PHD domain-containing proteins in mammals.  相似文献   

15.
RNF144A, an E3 ubiquitin ligase for DNA-dependent protein kinase catalytic subunit (DNA-PKcs), can promote DNA damage-induced cell apoptosis. Here we characterize an important regulation of RNF144A through its transmembrane (TM) domain. The TM domain of RNF144A is highly conserved among species. Deletion of the TM domain abolishes its membrane localization and also significantly reduces its ubiquitin ligase activity. Further evidence shows that the TM domain is required for RNF144A self-association and that the self-association may be partially mediated through a classic GXXXG interaction motif. A mutant RNF144A-G252L/G256L (in the G252XXXG256 motif) preserves membrane localization but is defective in self-association and ubiquitin ligase activity. On the other hand, a membrane localization loss mutant of RNF144A still retains self-association and E3 ligase activity, which can be blocked by additional G252L/G256L mutations. Therefore, our data demonstrate that the TM domain of RNF144A has at least two independent roles, membrane localization and E3 ligase activation, to regulate its physiological function. This regulatory mechanism may be applicable to other RBR (RING1-IBR-RING2) E3 ubiquitin ligases because, first, RNF144B also self-associates. Second, all five TM-containing RBR E3 ligases, including RNF144A and RNF144B, RNF19A/Dorfin, RNF19B, and RNF217, have the RBR-TM(GXXXG) superstructure. Mutations of the GXXXG motifs in RNF144A and RNF217 have also be found in human cancers, including a G252D mutation of RNF144A. Interestingly, RNF144A-G252D still preserves self-association and ubiquitin ligase activity but loses membrane localization and is turned over rapidly. In conclusion, both proper membrane localization and self-association are important for RNF144A function.  相似文献   

16.
A critical aspect of E3 ubiquitin ligase function is the selection of a particular E2 ubiquitin-conjugating enzyme to accomplish ubiquitination of a substrate. We examined the requirements for correct E2-E3 specificity in the RING-H2 ubiquitin ligase Hrd1p, an ER-localized protein known to use primarily Ubc7p for its function. Versions of Hrd1p containing the RING motif from homologous E3s were unable to carry out Hrd1p function, revealing a requirement for the specific Hrd1p RING motif in vivo. An in vitro assay revealed that these RING motifs were sufficient to function as ubiquitin ligases, but that they did not display the E2 specificity predicted from in vivo results. We further refined the in vitro assay of Hrd1p function by demanding not only ubiquitin ligase activity, but also specific activity that recapitulated both the E2 specificity and RING selectivity observed in vivo. Doing so revealed that correct E2 engagement by Hrd1p required the presence of portions of the Hrd1p soluble cytoplasmic domain outside the RING motif, the placement of the Hrd1p ubiquitin ligase in the ER membrane, and presentation of Ubc7p in the cytosolic context. We confirmed that these conditions supported the ubiquitination of Hrd1p itself, and the transfer of ubiquitin to the prototype substrate Hmg2p-GFP, validating Hrd1p self-ubiquitination as a viable assay of ligase function.  相似文献   

17.
The APC/Cdh1 E3 ubiquitin ligase plays an essential role in both mitotic exit and G1/S transition by targeting key cell-cycle regulators for destruction. There is mounting evidence indicating that Cdh1 has other functions in addition to cell-cycle regulation. However, it remains unclear whether these additional functions depend on its E3 ligase activity. Here, we report that Cdh1, but not Cdc20, promotes the E3 ligase activity of Smurf1. This is mediated by disruption of an autoinhibitory Smurf1 homodimer and is independent of APC/Cdh1 E3 ligase activity. As a result, depletion of Cdh1 leads to reduced Smurf1 activity and subsequent activation of multiple downstream targets, including the MEKK2 signaling pathway, inducing osteoblast differentiation. Our studies uncover a cell-cycle-independent function of Cdh1, establishing Cdh1 as an upstream component that governs Smurf1 activity. They further suggest that modulation of Cdh1 is a potential therapeutic option for treatment of osteoporosis.  相似文献   

18.
The mitogen-activated protein kinase (MAPK) signaling pathway is the primary regulatory module of various cellular processes such as cell proliferation, differentiation, and stress responses. This pathway converts external stimuli to cellular responses via three major kinases: mitogen-activated protein kinase (MAPK), mitogen-activated protein kinase kinase (MAPKK), and mitogen-activated protein kinase kinase kinase (MAPKKK). Ubiquitination is a post-translational modification of proteins with ubiquitin, which results in the formation of mono- or poly-ubiquitin chains of substrate proteins. Conversely, removal of the ubiquitin by deubiquitinating enzymes (DUBs) is known as deubiquitination. This review summarizes mechanisms of the MAPK signaling pathways (ERK1/2, ERK5, p38, and JNK1/2/3 signaling pathway) in cancers, and of E3 ligases and DUBs that target the MAPK signaling components such as Raf, MEK1/2, ERK1/2, MEKK2/3, MEKK1-4, TAK1, DLK1, MLK1-4, ASK1/2, and MKK3-7.  相似文献   

19.
Despite the sizable number of components that comprise Mapk cascades, Map3k1 is the only element that contains both a kinase domain and a plant homeodomain (PHD) motif, allowing Map3k1 to regulate the protein phosphorylation and ubiquitin proteasome systems. As such, Map3k1 has complex roles in the regulation of cell death, survival, migration and differentiation. Numerous mouse and human genetic analyses have demonstrated that Map3k1 is of critical importance for the immune system, cardiac tissue, testis, wound healing, tumorigenesis and cancer. Recent gene knockin of Map3k1 to mutate the E2 binding site within the Map3k1 PHD motif and high throughput ubiquitin protein array screening for Map3k1 PHD motif substrates provide critical novel insights into Map3k1 PHD motif signal transduction and bring a brand-new understanding to Map3k1 signaling in mammalian biology.  相似文献   

20.
Mitogen‐activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular‐signal‐regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three‐tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain‐mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63‐linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5–ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3‐ERK5‐dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5‐MAPK module and human muscle cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号