首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the present study, we report the identification and characterization of MEX (MEKK1-related protein X), a protein with homology to MEKK1 that is expressed uniquely in the testis. MEX is comprises four putative zinc-binding domains including an N-terminal SWIM (SWI2/SNF2 and MuDR) domain of unknown function and two RING (really interesting new gene) fingers separated by a ZZ zinc finger domain. Biochemical analyses revealed that MEX is self-ubiquitinated and targeted for degradation through the proteasome pathway. MEX can act as an E3, Ub (ubiquitin) ligase, through the E2, Ub-conjugating enzymes UbcH5a, UbcH5c or UbcH6. A region of MEX that contains the RING fingers and the ZZ zinc finger was required for interaction with UbcH5a and MEX self-association, whereas the SWIM domain was critical for MEX ubiquitination. The expression of MEX promoted apoptosis that was induced through Fas, DR (death receptor) 3 and DR4 signalling, but not that mediated by the BH3 (Bcl-2 homology 3)-only protein BimEL or the chemotherapeutic drug adriamycin. The enhancement of apoptosis by MEX required a functional SWIM domain, suggesting that MEX ubiquitination is critical for the enhancement of apoptosis. These results indicate that MEX acts as an E3 Ub ligase, an activity that is dependent on the SWIM domain and suggest a role for MEX in the regulation of death receptor-induced apoptosis in the testes.  相似文献   

3.
MEK kinase 2 (MEKK2) is a 70-kDa protein serine/threonine kinase that has been shown to function as a mitogen-activated protein kinase (MAPK) kinase kinase. MEKK2 has its kinase domain in the COOH-terminal moiety of the protein. The NH(2)-terminal moiety of MEKK2 has no signature motif that would suggest a defined regulatory function. Yeast two-hybrid screening was performed to identify proteins that bind MEKK2. Protein kinase C-related kinase 2 (PRK2) was found to bind MEKK2; PRK2 has been previously shown to bind RhoA and the Src homology 3 domain of Nck. PRK2 did not bind MEKK3, which is closely related to MEKK2. The MEKK2 binding site maps to amino acids 637-660 in PRK2, which is distinct from the binding sites for RhoA and Nck. This sequence is divergent in the closely related kinase PRK1, which did not bind MEKK2. In cells, MEKK2 and PRK2 are co-immunoprecipitated and PRK2 is activated by MEKK2. Similarly, purified recombinant MEKK2 activated PRK2 in vitro. MEKK2 activation of PRK2 is independent of MEKK2 regulation of the c-Jun NH(2)-terminal kinase pathway. MEKK2 activation of PRK2 results in a bifurcation of signaling for the dual control of MAPK pathways and PRK2 regulated responses.  相似文献   

4.
MEKK2 and MEKK3 are MAPK kinase kinases that activate the ERK5 pathway by phosphorylating and activating the MAPK kinase, MEK5. Activated MEK5 then phosphorylates and activates ERK5. PB1 domains were first defined in the p67phox and Bem1p proteins and have been shown to mediate protein-protein heterodimerization. A PB1 domain is encoded within the N-terminal portion of MEKK2, MEKK3, and MEK5. Herein, we analyze the functional role of MEKK2, MEKK3, and MEK5 PB1 domains in the ERK5 activation pathway. The PB1 domains of MEKK2 and MEKK3 bind the PB1 domain of MEK5 but do not significantly homo- or heterodimerize with one another in vitro. Furthermore, co-immunoprecipitation of MEKK2 and MEK5 from cell lysates shows that they form a complex in vivo. Deletion or mutation of the MEKK2 PB1 domain abolishes MEKK2-MEK5 complexes, demonstrating that the PB1 domain interaction is required for MEKK2-MEK5 interactions. Expression in cells of the MEKK2 or MEKK3 PB1 domain inhibits ERK5 activation, whereas expression of a mutant MEKK2 unable to bind the MEK5 PB1 domain or expression of the p67phox PB1 domain has no effect on ERK5 activation. These findings demonstrate that the PB1 domain mediates the association of MEKK2 and MEKK3 with MEK5 and that the respective PB1 domains of these kinases are critical for regulation of the ERK5 pathway. The free PB1 domain of MEKK2 or MEKK3 functions effectively to inhibit the ERK5 pathway but not the p38 or JNK pathways, demonstrating the specific and unique requirement of the MEKK2 and MEKK3 PB1 domain in regulating ERK5 activation.  相似文献   

5.
MEKK1 is a MAPK kinase kinase that is activated in response to stimuli that alter the cytoskeleton and cell shape. MEKK1 phosphorylates and activates MKK1 and MKK4, leading to ERK1/2 and JNK activation. MEKK1 has a plant homeobox domain (PHD) that has been shown to have E3 ligase activity. (Lu, Z., Xu, S., Joazeiro, C., Cobb, M. H., and Hunter, T. (2002) Mol. Cell 9, 945-956). MEKK1 kinase activity is required for ubiquitylation of MEKK1. MEKK1 ubiquitylation is inhibited by mutation of cysteine 441 to alanine (C441A) within the PHD. The functional consequence of MEKK1 ubiquitylation is the inhibition of MEKK1 catalyzed phosphorylation of MKK1 and MKK4 resulting in inhibition of ERK1/2 and JNK activation. The C441A mutation within the PHD of MEKK1 prevents ubiquitylation and preserves the ability of MEKK1 to catalyze MKK1 and MKK4 phosphorylation. MEKK1 ubiquitylation represents a mechanism for inhibiting the ability of a protein kinase to phosphorylate substrates and regulate downstream signaling pathways.  相似文献   

6.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) kinases (MEKKs) are serine/threonine kinases that are upstream regulators of MAPKs. Here, the role of the amino-terminal (N-terminal) domain of MEKK1-4 on the regulation of different intracellular signaling pathways, apoptosis, and cell proliferation has been assessed by comparing the responses induced by the full-length (FL) MEKKs to those induced by the kinase domains only. For each MEKK, the pattern of activation of NF kappa B, the ERK MAPK pathway, and the c-Jun N-terminal kinase (JNK) MAPK pathway markedly differed between the kinase domain and the FL form. Similarly, cell proliferation and apoptosis were differently regulated by the FL MEKK and the corresponding kinase domain. Our data show that the N-terminal domain of the MEKKs determines the specificity and the strength of activation of various intracellular signaling pathways and cellular responses.  相似文献   

7.
8.
9.
Mitogen-activated protein kinase (MAPK) pathways coordinate critical cellular responses to mitogens, stresses, and developmental cues. The coupling of MAPK kinase kinase (MAP3K) --> MAPK kinase (MEK) --> MAPK core pathways to cell surface receptors remains poorly understood. Recombinant forms of MAP3K MEK kinase 1 (MEKK1) interact in vivo and in vitro with the STE20 protein homologue germinal center kinase (GCK), and both GCK and MEKK1 associate in vivo with the adapter protein tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2). These interactions may couple TNF receptors to the SAPK/JNK family of MAPKs; however, a molecular mechanism by which these proteins might collaborate to recruit the SAPKs/JNKs has remained elusive. Here we show that endogenous GCK and MEKK1 associate in vivo. In addition, we have developed an in vitro assay system with which we demonstrate that purified, active GCK and TRAF2 activate MEKK1. The RING domain of TRAF2 is necessary for optimal in vitro activation of MEKK1, but the kinase domain of GCK is not. Autophosphorylation within the MEKK1 kinase domain activation loop is required for activation. Forced oligomerization also activates MEKK1, and GCK elicits enhanced oligomerization of coexpressed MEKK1 in vivo. These results represent the first activation of MEKK1 in vitro using purified proteins and suggest a mechanism for MEKK1 activation involving induced oligomerization and consequent autophosphorylation mediated by upstream proteins.  相似文献   

10.
11.
Twenty human proteins encode Phox/Bem1p (PB1) domains, which are involved in forming protein heterodimers. MEKK2, MEKK3, and MEK5 are 3 serine-threonine protein kinases that have PB1 domains. MEKK2, MEKK3, and MEK5 are the MAP3Ks and the MAP2K in the ERK5 mitogen-activated protein kinase (MAPK) signaling module. ERK5 is a critical MAPK for both development of the vasculature and vascular homeostasis in the adult, but no other MAPK has been shown to be critical in vascular maintenance in the adult animal. MEKK2 and MEKK3 are the only MAP3Ks shown to physically interact with and activate the MEK5-ERK5 signaling module. Interaction of MEKK2 or MEKK3 with MEK5 is mediated by heterodimerization of the MEKK2 (or MEKK3) PB1 and MEK5 PB1 domains. The authors have developed a homogeneous, time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor PB1-PB1 domain heterodimerization. The assay uses a europium-chelate conjugated GST-MEK5 PB1 domain chimera, biotinylated MEKK2 PB1 domain, and streptavidin-Cy5. Interaction of the MEKK2 and MEK5 PB1 domains gives a robust FRET signal (Z' factor = 0.93), which is completely abrogated by mutation of 2 acidic residues (64D65E-->AA) within the MEK5 PB1 domain that causes loss of stable PB1-PB1 domain interaction. This assay can be used to study the specificity of PB1-PB1 domain interactions and to screen for molecules that can regulate MEKK2/MEKK3-MEK5 interactions. Disruption of PB1 domain interactions represents a novel approach for selectively regulating the ERK5 signaling pathway independent of kinase active site-directed adenosine triphosphate competitive inhibitors.  相似文献   

12.
Mitogen-activated protein kinase (MAPK) cascades are central components of signal transduction pathways induced by mitogens and stresses. They consist of a three-kinase module in which a mitogen-activated protein kinase kinase kinase (MAP3K) activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates MAPK. The molecular determinants that underlie specific MAP3K-MAP2K interactions are poorly understood. In this study, we examined the interaction between the MAP3K MEKK1 and MKK4, a MAP2K of the JNK pathway. Select point mutations in subdomain X of the catalytic domain of MEKK1 (MEKK1delta) were found to impair the ability of MEKK1delta to bind to and activate MKK4. Such mutations were also found to impair MEKK1delta-induced activation of an AP1 reporter gene. These studies point to a critical role for subdomain X in the interaction of MEKK1 with MKK4.  相似文献   

13.
Mitogen-activated protein kinases (MAPKs) are activated through cascades or modules consisting of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Investigating the molecular basis of activation of the c-Jun N-terminal kinase (JNK) subgroup of MAPK by the MAPKKK MEKK2, we found that strong and specific JNK1 activation by MEKK2 was mediated by the MAPKK JNK kinase 2 (JNKK2) rather than by JNKK1 through formation of a tripartite complex consisting of MEKK2, JNKK2, and JNK1. No scaffold protein was required for the MEKK2-JNKK2-JNK1 tripartite-complex formation. Expression of JNK1, JNKK2, and MEKK2 significantly augmented the coprecipitation of, respectively, MEKK2-JNKK2, MEKK2-JNK1, and JNKK2-JNK1, indicating that the interaction of MEKK2, JNKK2, and JNK1 is synergistic. Finally, the JNK1 was activated more efficiently in the MEKK2-JNKK2-JNK1 complex than was the JNK1 excluded from the complex. Thus, formation of a signaling complex through synergistic interaction of a MAPKKK, a MAPKK, and a MAPK molecule like MEKK2-JNKK2-JNK1 is likely to be responsible for the efficient, specific flow of information via MAPK cascades.  相似文献   

14.
MEKK2 and MEK5 encode Phox/Bem1p (PB1) domains that heterodimerize with one another. MEKK2, MEK5, and extracellular signal-related kinase 5 (ERK5) form a ternary complex through interactions involving the MEKK2 and MEK5 PB1 domains and a 34-amino-acid C-terminal extension of the MEK5 PB1 domain. This C-terminal extension encodes an ERK5 docking site required for MEK5 activation of ERK5. The PB1 domains bind in a front-to-back arrangement, with a cluster of basic amino acids in the front of the MEKK2 PB1 domain binding to the back-end acidic clusters of the MEK5 PB1 domain. The C-terminal moiety, including the acidic cluster of the MEKK2 PB1 domain, is not required for MEK5 binding and binds MKK7. Quiescent MEKK2 preferentially binds MEK5, and MEKK2 activation results in ERK5 activation. Activated MEKK2 binds and activates MKK7, leading to JNK activation. The findings define how the MEKK2 and MEK5 PB1 domains are uniquely used for differential binding of two mitogen-activated protein kinase kinases, MEK5 and MKK7, for the coordinated control of ERK5 and c-Jun N-terminal kinase activation.  相似文献   

15.
16.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

17.
18.
Y C Su  J Han  S Xu  M Cobb    E Y Skolnik 《The EMBO journal》1997,16(6):1279-1290
Nck, an adaptor protein composed of one SH2 and three SH3 domains, is a common target for a variety of cell surface receptors. We have identified a novel mammalian serine/threonine kinase that interacts with the SH3 domains of Nck, termed Nck Interacting Kinase (NIK). This kinase is most homologous to the Sterile 20 (Ste20) family of protein kinases. Of the members of this family, GCK and MSST1 are most similar to NIK in that they bind neither Cdc42 nor Rac and contain an N-terminal kinase domain with a putative C-terminal regulatory domain. Transient overexpression of NIK specifically activates the stress-activated protein kinase (SAPK) pathway. Both the kinase domain and C-terminal regulatory region of NIK are required for full activation of SAPK. NIK likely functions upstream of MEKK1 to activate this pathway; a dominant-negative MEK kinase 1 (MEKK1) blocks activation of SAPK by NIK. MEKK1 and NIK also associate in cells and this interaction is mediated by regulatory domains on both proteins. Two other members of this kinase family, GCK and HPK1, contain C-terminal regulatory domains with homology to that of NIK. These findings indicate that the C-terminal domain of these proteins encodes a new protein domain family and suggests that this domain couples these kinases to the SAPK pathway, possibly by interacting with MEKK1 or related kinases.  相似文献   

19.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号