首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
选取不同叶色紫苏资源,统一田间栽培管理,待紫苏成熟期收获紫苏叶,并对紫苏叶中花青素含量进行分析。紫苏花青素传统的提取方法中含有大量的副产物如糖、有机酸和蛋白质等副产物,这些杂质可能加速花青素的降解。本研究比较不同提取介质的提取能力及选择性,其中乙醇-酸化水(50%,v/v)提取花青素的含量最高(4.7%)。采用不同的吸附剂进行吸附纯化,实验表明XAD-7HP吸附树脂表现出较好的吸附能力和解吸能力,利用LCMS对花青素苷成分进行分析,花青素苷中丙二酸单酰基紫苏宁含量最高。  相似文献   

2.
以9个不同产地的紫苏为研究材料,比较叶片解剖结构、色素含量、光合特性的差异。结果表明:不同产地紫苏叶片均属于异面叶类型,栅栏组织均由1列排列紧密的长柱形细胞构成,其叶片海绵组织细胞2~3层,叶片下表皮有较多的气孔和腺毛,叶片气孔多为卵圆形;不同产地紫苏叶片的气孔直径和密度存在差异;其中,烟台紫苏的气孔直径最大,无锡紫苏的气孔密度最大,南京紫苏的气孔直径和密度均为最小;不同产地紫苏叶绿素和花色苷含量差异较大,叶色越紫,花色苷含量越高,叶绿素含量越低,而保定、邯郸和邢台三地紫苏同时有较高的叶绿素和花色苷含量;紫苏叶片花色苷含量与净光合速率之间存在负相关性,如烟台紫苏花色苷含量较低,其净光合速率较高,而南京紫苏花色苷含量较高,其净光合速率较低;不同产地间紫苏叶片解剖结构和叶片色素含量均存在差异,并且与净光合速率存在一定的相关性。本研究为紫苏种质资源及育种研究奠定了基础。  相似文献   

3.
为优化紫苏种子中总黄酮的提取方法,采用乙醇加热提取和超声波辅助提取,对提取液浓度、提取时间、提取温度开展了研究;并探究了不同地区的紫苏种子中总黄酮的含量,同时采用高效液相色谱法(HPLC)测定了不同地区的紫苏种子中芦丁和木犀草素的含量。试验结果表明:在用80%的乙醇溶液提取紫苏种子中的总黄酮时,温度控制在70℃,浸提120 min,提取率最高,可达4.39%;同等条件下用超声波辅助提取时,浸提90 min提取率最高,可达4.27%;超声波浸提法简便、快速、准确度较高,但不适宜长时提取;参试的4个不同地区的紫苏种子总黄酮含量差异极显著(F=17.592 0,P=0.000 7),宁夏中宁总黄酮含量是陕西蓝田的1.73倍;而且不同地区的紫苏种子中芦丁和木犀草素的含量不同,宁夏中宁芦丁含量最高,贵州都匀木犀草素含量最高。  相似文献   

4.
以紫苏幼苗为试验材料,通过营养液盆栽试验,在等氮条件下设置6种不同氮素形态[NH4+-N、NO3--N、CO(NH2)2]及其配比处理,测定其采收期前硝酸盐和亚硝酸盐含量的变化以及营养成分和药用成分的含量,探讨不同氮素形态及其配比对紫苏叶片硝酸盐和亚硝酸盐含量的动态变化、营养成分、矿质元素和次生代谢产物含量的影响,为生产中合理施用氮肥提供理论基础。结果表明,(1)紫苏叶片中的硝酸盐和亚硝酸盐含量随栽培时间的增加而不断累积,在采收前,叶片硝酸盐含量在全铵处理下最低,亚硝酸盐含量在铵硝比(NH4+-N/NO3--N)为25∶75时最低。(2)紫苏叶片中的可溶性糖、淀粉含量在全硝态氮处理下最高,而其游离氨基酸和维生素C含量在酰胺态氮处理时达到最大值;紫苏叶片中P、K、Ca累积量在铵硝比为50∶50时最高,Zn、Fe、Mn元素的含量在全铵态氮处理下最高,而Mg元素含量在全硝态氮处理下含量最高。(3)紫苏叶片中的总黄酮含量、挥发油含量以及迷迭香酸含量均随着铵硝比的增加呈现先升高后降低的趋势,并在铵硝比为25∶75时最高;紫苏叶片中花色苷相对含量在酰胺态处理下达到最大值。研究表明,在紫苏的栽培生产中,铵硝比为25∶75更有利提高其药用品质和营养品质,并且能降低其亚硝酸盐含量。  相似文献   

5.
HPLC法测定紫苏不同来源不同部位中迷迭香酸的含量   总被引:2,自引:0,他引:2  
赵茜  邹素兰 《广西植物》2014,(6):865-868
采用 HP LC 法测定14种不同来源紫苏不同部位的迷迭香酸的含量,并进行统计与聚类分析.结果表明:14种来源紫苏间叶、果穗、茎及根中迷迭香酸含量均有显著差异(P <0.05),同一来源不同部位间迷迭香酸含量也存在显著差异(P <0.05).各种来源紫苏叶中的迷迭香酸含量均最高;大部分来源紫苏果穗中迷迭香酸的含量较紫苏茎高.14份材料经聚类分析可分成4个类群.研究结果表明紫苏果穗可能是潜在的新药源,来源于长江中下游紫苏不同部位的迷迭香酸含量要比西南地区的高.  相似文献   

6.
该研究以7个品种铁筷子(Helleborus thibetanus Franch.)为试验材料,借助目视测色、RHSCC比色卡、色差仪进行花色表型的测定,采用高效液相色谱法-光电二极管阵列检测方法(HPLC-DAD)及高效液相色谱-电喷雾离子化-质谱联用技术(HPLC-ESI-MS)测定分析铁筷子花瓣中花青素苷成分及含量,以探究不同品种铁筷子的花色与花青素苷成分及含量之间的关系。结果显示:(1)紫色系品种花瓣的a*值最高b*值最低,黄色系品种花瓣的b*值最高a*值最低,不同品种的铁筷子花色越深L*值越低。(2)从5个有花青素苷积累的铁筷子品种中检测出11种花青素苷成分,分别为6种矢车菊素苷,4种飞燕草素苷,1种矮牵牛素苷;供试的铁筷子材料中红色系2个品种的花青素苷含量最高,紫色系品种次之;矢车菊素苷与飞燕草素苷为影响铁筷子花瓣呈色的主要色素物质。(3)不同种类的花青素和修饰基团的差异,导致铁筷子花瓣呈现不同的色彩,含有多种酰基化修饰的飞燕草素苷使铁筷子花色蓝移进而使花色加深。(4)相关分析表明,铁筷子花瓣的L*值与a*值呈显著负相关关系,与b*值呈显著的正相关关系;L*值与总花青素苷含量呈显著负相关关系,且随着花青素苷含量的累积a*值增加,花色红移。研究表明,花青素苷的成分及含量是导致铁筷子花瓣呈现不同颜色的主要原因,矢车菊素苷和飞燕草素苷的互作以及酰基化的修饰使铁筷子呈现不同程度的紫色,花青素苷的不同累积量影响了花瓣颜色的明暗变化,从而使铁筷子花瓣颜色丰富。  相似文献   

7.
树莓种子原花青素的提取分离工艺研究   总被引:2,自引:0,他引:2  
本文对树莓种子原花青素的提取及分离的工艺条件进行了研究和探讨。结果表明:水对原花青素的提取效果较好。用10倍于树莓种子重量的水(pH 8)于80℃提取三次,每次90 min,原花青素的提取效果最佳。提取液浓缩后,用NKA树脂吸附,当上样液pH值为7时,以50%乙醇溶液洗脱,分离出的原花青素含量最高,达23.66%,且产品得率也最大,达11.0%。  相似文献   

8.
我国为世界三大高氮沉降区之一,氮沉降严重影响了植物生长发育。该研究采用喷施硝酸铵(NH4NO3)模拟氮沉降,分析了不同浓度氮沉降作用下紫苏叶中紫苏醛、D-柠檬烯、α-蒎烯等3种挥发油成分的变化规律。结果表明:随喷施氮盐浓度不断提高,紫苏叶挥发油的3种主要成分含量均有显著下降趋势;氮盐浓度升至0.044 mol·L~-1时,紫苏醛、D-柠檬烯、α-蒎烯的含量降至最低,之后趋于稳定;氮盐浓度对3种挥发油成分含量的比例也有影响;不同氮盐浓度处理下,3种挥发油成分的变异系数不同,紫苏醛的变异系数为0.692 9,D-柠檬烯的变异系数为0.460 1,而α-蒎烯的变异系数为0.271 6,即紫苏醛含量变化最大,α-蒎烯含量最为稳定。大气氮沉降浓度对紫苏叶挥发油主要成分含量有显著影响,随氮盐浓度不断提高,紫苏醛、D-柠檬烯、α-蒎烯等3种挥发油成分含量呈降低趋势,尤以紫苏醛含量的降低最为剧烈。氮沉降增加对紫苏叶有效成分含量有降低的作用。  相似文献   

9.
该研究以5个黑稻品种籽粒为材料,通过单因素实验探究树脂吸附法中各因素对黑米花青素纯化效果的影响,优化花青素纯化工艺,比较分析对不同黑稻品种黑米和谷壳的花青素纯化后的产量;采用1,1-二苯基-2-三硝基苯肼(DPPH)法比较其抗氧化活性,并采用PCR方法检测花青素生物合成代谢途径中关键结构基因,以明确不同黑稻品种中黑米和谷壳花青素产量及其抗氧化特性,为黑稻花青素开发利用提供技术支撑。结果表明:(1)黑稻花青素提取液的最佳纯化条件为:静态吸附平衡时间4 h,解吸时间1.5 h,吸附液pH为2.5,温度30℃,70%乙醇洗脱。(2)黑稻黑米中花青素产量最高的品种是‘辐黑香糯’(213μg/g),谷壳中花青素产量最高的品种是‘固城黑糯’(226μg/g),且‘固城黑糯’黑米和谷壳的总花青素产量最高(432μg/g)。(3)黑米花青素的DPPH清除率为65.1%,黑色谷壳花青素的DPPH清除率为73.7%,每克黑米和黑色谷壳的花青素冻干粉对DPPH自由基清除能力分别相当于3.694和4.208 mmol维生素E,谷壳花青素抗氧化能力比黑米花青素高13.9%。(4)对5个黑稻品种的花青素合成途径的5个关键基因检测发现,仅‘矮血糯’中无黄酮-3′-氢化酶基因(OsF3′H),而且其谷壳中的花青素产量(125μg/g)也显著低于其余4个品种,表明OsF3′H基因可能与黑稻谷壳的花青素含量有关。  相似文献   

10.
为比较不同提取方法对锁阳原花青素得率、抗氧化性和抗糖基化活性的影响,本研究分别采用超声波法、乙醇/硫酸铵双水相萃取法、水提法、微波法和酶解法提取锁阳中原花青素,用香草醛-浓盐酸法测定原花青素含量。采用DPPH·清除能力和·OH清除能力衡量其体外抗氧化能力,采用牛血清白蛋白(BSA)-葡萄糖模拟反应体系和牛血清白蛋白-丙醛酸(MGO)模拟反应体系评价原花青素抗糖基化活性。结果表明:微波法提取得率最高,可达15. 00%,提取时间短,仅为19 min。不同提取方法对DPPH·清除能力依次为微波法酶法超声波法乙醇/硫酸铵双水相萃取法水提法;不同提取方法对·OH清除能力依次为:微波法酶解法超声法水提法乙醇/硫酸铵双水相萃取法。微波法制备原花青素在牛血清白蛋白-果糖模拟反应体系和牛血清白蛋白-丙酮醛模拟反应中均有最高抑制率;但抗氧化和抗糖基化活性无相关性。  相似文献   

11.
紫苏叶挥发油舒张血管作用及其活性物质探究   总被引:1,自引:0,他引:1  
为探究紫苏叶挥发油及其代表性成分对KCl预收缩胸主动脉血管环的影响,本文应用大鼠离体胸主动脉环试验对紫苏叶挥发油进行药效学评价,利用离体组织灌流模型和PowerLab数据分析系统采集和记录不同浓度紫苏叶挥发油对氯化钾(KCl)刺激下血管张力的影响。应用气质联用(GC-MS)技术对紫苏叶油进行化学成分分析,结合其代表性成分进行活性追踪,以阐释紫苏油舒张血管的药效物质基础。结果发现紫苏叶挥发油具有显著的舒张KCl预收缩胸主动脉血管环作用,其EC_(50)为8.6μg/mL,经GC-MS分析表明发挥作用的物质主要为单萜类成分,且发现其代表性成分紫苏醛具有一定的舒张血管作用。本研究不仅首次发现紫苏叶挥发油具有舒张血管活性,同时证实紫苏醛是紫苏叶油发挥舒张血管的药效物质基础之一,为紫苏叶的研究与开发提供新的依据。  相似文献   

12.
为比较不同提取方法对锁阳原花青素得率、抗氧化性和抗糖基化活性的影响,本研究分别采用超声波法、乙醇/硫酸铵双水相萃取法、水提法、微波法和酶解法提取锁阳中原花青素,用香草醛-浓盐酸法测定原花青素含量。采用DPPH·清除能力和·OH清除能力衡量其体外抗氧化能力,采用牛血清白蛋白(BSA)-葡萄糖模拟反应体系和牛血清白蛋白-丙醛酸(MGO)模拟反应体系评价原花青素抗糖基化活性。结果表明:微波法提取得率最高,可达15. 00%,提取时间短,仅为19 min。不同提取方法对DPPH·清除能力依次为微波法>酶法>超声波法>乙醇/硫酸铵双水相萃取法>水提法;不同提取方法对·OH清除能力依次为:微波法>酶解法>超声法>水提法>乙醇/硫酸铵双水相萃取法。微波法制备原花青素在牛血清白蛋白-果糖模拟反应体系和牛血清白蛋白-丙酮醛模拟反应中均有最高抑制率;但抗氧化和抗糖基化活性无相关性。  相似文献   

13.
菊花不同花色品种中花青素苷代谢分析   总被引:7,自引:0,他引:7  
应用高效液相色谱和多级质谱联用技术(HPLC-ESI-MSn), 分析菊花(Chrysanthemum × morifolium)白色、粉色、红色、紫色、红紫色和墨色6个色系共计82个品种中花青素苷合成过程的中间产物和最终产物, 发现从白色、粉色、红色、紫色、红紫色到墨色花青素苷含量快速增加, 分别为4.68、111.60、366.89、543.56、1 220.36和2 674.95 μg·g–1, 不同色系间花青素苷的含量差异显著(P<0.01), 花青素苷含量越高花色越深; 墨色菊花品种中总类黄酮含量显著高于其它花色品种(P<0.01), 其它不同色系间总类黄酮含量差异不显著(P>0.05); 随着菊花花色变深, 从柚皮素分支到圣草酚的代谢流, 以及从圣草酚分支到矢车菊素苷的代谢流比例增加。花青素苷成分分析发现: 菊花中只含有矢车菊素苷类化合物。根据花青素苷代谢成分分析结果绘制了菊花中花青素苷代谢路径图, 即在菊花类黄酮代谢途径中只存在矢车菊素苷代谢分支途径;菊花不同色系在柚皮素和圣草酚2个关键代谢分支点上向不同方向代谢流的分配比例不同, 造成花青素苷产物含量不同,导致不同花色。以上研究结果为菊花花色改良的分子育种提供了理论依据。  相似文献   

14.
紫苏叶精油化学成分分析研究   总被引:7,自引:0,他引:7  
用GC -MS对紫苏叶精油进行分析鉴定 ,结果表明 :紫苏叶精油中主要化学成份为甲基紫苏酮 ,其质量分数为 5 7.5 1%。  相似文献   

15.
采用乙醇提取,树脂纯化,HPLC制备以及LC-MS和1H NMR鉴定,从牡丹籽粕的醇提物中分离纯化了4种主要成分,分别为6'-O-β-D-葡萄糖芍药内酯苷、芍药内酯苷、β-gentiobiosylpaeoniflorin和芍药苷。对大孔吸附树脂法纯化芍药苷类成分的条件进行了试验,从4类11种树脂中筛选出HPD-200A型大孔吸附树脂,其较优的吸附分离条件为:上样液浓度(芍药苷)8.0 mg/mL,上样体积为4.5倍床体积(BV),流速为1/16 BV/min,洗脱剂乙醇溶液浓度为50%(v/v),洗脱体积为4 BV,流速为1/16 BV/min。此条件下所得提取物中含芍药苷32.3%、芍药内酯苷16.5%、6'-O-β-D-葡萄糖芍药内酯苷8.02%、β-gentiobiosylpaeoniflorin 6.63%。  相似文献   

16.
查尔酮异构酶CHI是花青素苷合成途径中的关键酶。为了解桂花花青苷的合成机理,该研究对3个桂花品种的花青苷含量进行了测定。结果显示:(1)‘橙红丹桂’花中的花青苷含量最高,‘金桂’和‘早银桂’中花青苷含量较低。(2)利用RACE和RT-PCR方法获得了桂花查尔酮异构酶基因(OfCHI)的全长cDNA序列1 069bp,该基因编码248个氨基酸,相对分子量为26.85kD,等电点为6.34。(3)多重序列比对显示,OfCHI与金花茶CnCHI、忍冬LjCHI、石榴PgCHI的相似性分别为68.13%、65.86%和63.53%,氨基酸序列中含有CHI蛋白的活性位点Thr47、Tyr108、Met115以及Ser192;系统进化树分析表明,OfCHI与其他物种起源相同,而与油橄榄OeCHI亲缘关系最近。(4)利用qRT-PCR对不同桂花品种、不同组织中OfCHI的表达量检测结果显示,OfCHI在‘橙红丹桂’花中表达量最高,在‘金桂’和‘早银桂’中表达量较低;OfCHI在‘橙红丹桂’、‘金桂’和‘早银桂’的花、茎、叶中均有表达,且表达趋势相同,均为叶中表达量最高。该研究为揭示桂花青素苷的合成机理奠定了理论基础,并为培育不同花色的桂花新品种提供了基因专利。  相似文献   

17.
以DPPH抑制率为指标,研究石榴皮中抗氧化活性成分。采用超声波法进行提取,通过正交实验确定了最佳提取工艺为:乙醇浓度60%、pH3、料液比(m/v)1∶15、提取3次,每次40 min。石榴皮粗提物依次用石油醚、氯仿、乙酸乙酯、正丁醇、水萃取,经D101大孔吸附树脂纯化,并采用液相色谱-质谱联用法(LC-MS)对石榴皮抗氧化成分进行鉴定。结果表明,石榴皮粗提物中,正丁醇部位对DPPH的抑制率最高,达62.68%,液-质联用鉴定出安石榴苷的两种异构体为石榴皮中最主要的抗氧化成分。  相似文献   

18.
作为葡萄加工的副产物,葡萄籽中富含葡萄籽油和低聚原花青素。作者利用超临界二氧化碳萃取葡萄籽后所得的残渣为原料,以含有0.8%醋酸的乙醇溶液为提取剂来提取其中的原花青素,在55℃条件下进行两次重复提取,葡萄籽残渣与提取液的比例控制在1∶8(W/V),每次提取60 min,原料中原花青素的提取率可以达到98.2%;为提高产品的贮藏稳定性,还对以阿拉伯胶与麦芽糊精组合作为原花青素微胶囊壁材来进行微胶囊化的工艺进行研究,结果表明在阿拉伯胶占壁材40%、芯壁材比为3∶7,混合液中固形物含量为20%的条件下,经喷雾干燥后所得原花青素的产率为88.84%,微胶囊化效率达到99.2%。检测结果表明,原花青素紫外吸收光谱在微胶囊化前后没有变化,而其贮藏稳定性得到提高。  相似文献   

19.
采用中心组合设计(CCD)-响应面(RSM)优化紫苏籽油脂的水酶法提取工艺。在单因素试验的基础上采用中心组合设计方法,研究了酶的种类、酶解温度、pH、液(mL)固(g)比、加酶量、以及时间相互作用对紫苏油脂提取率的影响。结果显示,拟合得到方程显著,确定的紫苏油脂提取最优条件为:碱性蛋白酶在pH9.5条件下液(mL)固(g)比9.97∶1、加酶量2.75%、温度56.1℃、时间5.25h,该条件下紫苏油脂的提取率可达到37.65%,与理论值38.3%十分接近,建立的模型真实可靠,确定了紫苏油脂的最佳提取工艺。经气相色谱检测紫苏籽油中含有棕榈酸、硬脂酸、油酸、亚油酸、α-亚麻酸等脂肪酸,水酶法提取紫苏油脂的α-亚麻酸相对含量最高67.9%,且相对溶剂法及冷榨法理化指标最好。  相似文献   

20.
采用响应面法优化了火棘不可萃取多酚(non-extractable polyphenol,NEPP)的提取工艺,分析了火棘中可萃取多酚(extractable polyphenol,EPP)和不可萃取多酚分别占总酚(total polyphenol,TEPP)的比例,同时监测了NEPP萃取液的抗氧化能力。以NEPP得率为评价指标,采用Folin-Ciocalteu法测定NEPP含量。考察了乙醇浓度(%,v/v)、乙醇占乙醇-硫酸提取液的比率(%,v/v)、料液比(g/m L)、提取时间(h)及提取温度(℃)对火棘NEPP得率的影响。进一步通过Box-Behnken设计优化提取工艺,同时以ABTS及FRAP法对NEPP提取液的抗氧化能力进行测定。最佳提取工艺为:提取时间2.68 h,乙醇浓度94.44%(V/V),温度83.47℃,NEPP萃取量可达167.328 mg/g,EPP 40.4 mg/g。响应面模型优化火棘NEPP提取工艺结果可靠,NEPP占火棘TEPP比重较高,为80.55%,ABTS及FRAP抗氧化能力均与NEPP含量呈良好正相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号