首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
BACKGROUND: Prion diseases belong to a group of neurodegenerative disorders affecting humans and animals. The human diseases include kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). The pathogenic mechanisms of the prion diseases are not yet understood. Monoclonal antibodies provide valuable tools in the diagnosis, as well as in the basic research, of several diseases; however, monospecific antisera or monoclonal antibodies (mAbs) against human prion proteins were, until now, not available. MATERIALS AND METHODS: We have developed an immunization protocol based on nucleic acid injection into nontolerant PrP0/0 mice. DNA or RNA coding for different human prion proteins including the mutated sequences associated with CJD, GSS, and FFI were injected into muscle tissue. Mice were primarily inoculated with DNA plasmids encoding the prion protein (PRNP) gene and boosted either with DNA, RNA, or recombinant Semliki Forest Virus particles expressing PRNP. Hybridomas were then prepared. RESULTS: Different mAbs against human prion proteins were obtained, and their binding behavior was analyzed by peptide enzyme-linked immunosorbent assay, Western blot, immunofluorescence, and immunoprecipitation. Their cross-reactivity with prion protein from other species was also determined. Our mAbs are directed against four different linear epitopes and may also recognize discontinuous regions of the native prion protein. CONCLUSIONS: These antibodies should allow us to address questions concerning the nature of the prion protein as well as the initiation and progression of prion diseases. Moreover, these mAbs can now be used for the diagnosis of prion diseases of humans and animals.  相似文献   

2.
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.  相似文献   

3.
Fatal familial insomnia (FFI) is a subacute dementing illness originally described in 1986. The phenotypic characteristics of this disease include progressive untreatable insomnia, dysautonomia, endocrine and motor disorders, preferential hypometabolism in the thalamus as determined by PET scanning, and selective thalamic atrophy. These characteristics readily distinguish FFI from other previously described neurodegenerative conditions. Recently, FFI was shown to be linked to a mutation in the prion protein gene (PRNP) at codon 178, which results in the substitution of asparagine for aspartic acid. As such, FFI represents the most recent addition to the growing family of prion protein-related diseases. The mutation that results in FFI had previously been linked to a subtype of familial Creutzfeld-Jakob disease (178Asn CJD). The genotypic basis for the difference between FFI and 178AsnCJD lies in a polymorphism at codon 129 of the mutant prion protein gene: 129Met 178Asn results in FFI, 129Val 178Asn in CJD. The finding that the combination of a polymorphism and a single pathogenic mutation result in two distinct conditions represents a singnificant advance in our understanding of phenotypic variability.  相似文献   

4.
Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg) mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD) mice modeling CJD178. No prion infectivity was detectable in Tg(FFI) and Tg(CJD) brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI) and Tg(CJD) neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.  相似文献   

5.
Molecular genetics of human prion diseases in Germany   总被引:12,自引:0,他引:12  
Human prion diseases may be acquired as infectious diseases, they may be inherited in an autosomal dominant fashion or occur sporadically. Mutations and polymorphisms in the sequence of the coding region of the prion protein gene (PRNP) have been established as an important factor in all of these three types of prion diseases. Therefore, a total of 578 patients with suspect prion diseases referred to the German Creutzfeldt-Jakob disease (CJD) surveillance unit over a period of 4.5 years have been examined for mutations and polymorphisms in the coding region of PRNP. We found 40 cases with a missense mutation previously reported as pathogenic. Amongst these, the aspartate to asparagine change at codon 178 (D178N) was the most common mutation. All of these cases carried the D178N mutation in coupling with methionine at codon 129, resulting in the typical fatal familial insomnia (FFI) genotype. Most cases with pathogenic mutations were not found in the group of clinically "probable" cases according to established clinical criteria, supporting the notion that inherited prion diseases often exhibit atypical features. Two novel missense mutations (T188R and P238S) and several silent polymorphisms were found, demonstrating the quality of our screening procedure based on a modified version of the single-stranded conformational polymorphism technique. In "definite" CJD cases with no pathogenic mutation, the patients clinically classified as "probable" were mostly homozygous for methionine at the common polymorphism at codon 129, whereas there was a marked over-representation of patients homozygous for valine amongst those clinically classified as "possible". This large study on suspect cases of human prion diseases in Germany clearly shows that PRNP genetics is essential for a comprehensive analysis of prion diseases.  相似文献   

6.
Genetic study of over 200 cases of Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), fatal familial insomnia (FFI), and kuru have brought a reliable body of evidence that the familial forms of CJD and all known cases of GSS and FFI are linked to germline mutations in the coding region of the PRNP gene on chromosome 20, either point substitutions or expansion of the number of repeat units. No pathogenic mutations have so far been found in sporadic or infectious forms of CJD, although there are features of genetic predisposition in iatrogenic CJD and kuru. In FFI and familial CJD, clinically and pathologically distinct syndromes that are both linked to the 178Asp→Asn substitution, phenotypic expression is dependent on a polymorphism at codon 129. Synthetic peptides homologous to several regions of PrP spontaneously form insoluble amyloid fibrils with unique morphological characteristics and polymerization tendencies. Peptides homologous to mutated regions of PrP exhibit enhanced fibrilogenic properties and, if mixed with the wild-type peptide, produce even more abundant and larger fibrous aggregates. A similar process in vivo may lead to amyloid accumulation and disease, and transmission of “baby fibrils” may induce disease in other hosts.  相似文献   

7.
人类朊病毒病中约10%~15%具有家族遗传特性,其中插入或缺失突变多发生于PrP蛋白N末端的八肽重复区域。运用PCR成功地构建并表达了含不同八肽重复数目的PrP蛋白,并观察八肽重复数目的增加对PrP与Cu^2+等二价离子以及tau蛋白的相互作用的影响。实验结果显示:各种纯化后的PrP蛋白对常规浓度PK消化是敏感的,而与Cu^2+共同孵育可使PrP蛋白的PK抗性增强;八肽重复序列的数目及Cu^2+的浓度决定了PK抗性的出现和强弱。另外,MnH可诱导产生与CuH相似的结果,但其诱导效应似乎低于CuH,而Zn^2+对PrP蛋白的PK抗性无影响。GST—tau包被的ELISA检测证实,重组的PrP呈现出明显的tau蛋白结合能力,并且与八肽重复序列的数量相关,重复序列数量越多,结合能力越强。这些结果提示,CuH诱导产生的PrP蛋白PK抗性是通过八肽重复序列区域产生的,并且直接与重复序列的数量相关。另外,PrP蛋白八肽重复序列的存在和数量直接影响PrP与tau蛋白的结合效应。除了八肽区域外,PrP蛋白其它区域似乎也具有一定的tau蛋白结合能力。  相似文献   

8.
Genetic prion disease: the EUROCJD experience   总被引:10,自引:0,他引:10  
A total of 10–15% of human transmissible spongiform encephalopathies (TSEs) or prion diseases are characterised by disease-specific mutations in the prion protein gene (PRNP). We examined the phenotype, distribution, and frequency of genetic TSEs (gTSEs) in different countries/geographical regions. We collected standardised data on gTSEs between 1993 and 2002 in the framework of the EUROCJD collaborative surveillance project. Our results show that clinicopathological phenotypes include genetic Creutzfeldt–Jakob disease (gCJD), fatal familial insomnia (FFI), and Gerstmann–Sträussler–Scheinker disease (GSS). Genetic TSE patients with insert mutation in the PRNP represent a separate group. Point and insertional mutations in the PRNP gene varies significantly in frequency between countries. The commonest mutation is E200K. Absence of a positive family history is noted in a significant proportion of cases in all mutation types (12–88%). FFI and GSS patients develop disease earlier than gCJD. Base pair insertions associated with the Creutzfeldt–Jakob disease (CJD) phenotype, GSS, and FFI cases have a longer duration of illness compared to cases with point mutations and gCJD. Cerebrospinal fluid 14-3-3 immunoassay, EEG, and MRI brain scan are useful in the diagnosis of CJD with point mutations, but are less sensitive in the other forms. Given the low prevalence of family history, the term “gTSE” is preferable to “familial TSE”. Application of genetic screening in clinical practice has the advantage of early diagnosis and may lead to the identification of a risk of a TSE.Gábor G. Kovács and Maria Propolo Contributed equally  相似文献   

9.
Human prion diseases have inherited, sporadic, and acquired etiologies. The appearance of the novel acquired prion disease, variant Creutzfeldt-Jakob disease (vCJD), and the demonstration that it is caused by the same prion strain as that causing bovine spongiform encephalopathy, has led to fears of a major human epidemic. The etiology of classical (sporadic) CJD, which has a worldwide incidence, remains obscure. A common human prion-protein-gene (PRNP) polymorphism (encoding either methionine or valine at codon 129) is a strong susceptibility factor for sporadic and acquired prion disease. However, a quantitative-trait-locus study of prion incubation periods in mice has demonstrated an important factor that is close to Prnp but is independent of its coding sequence or that of the nearby prion-like doppel gene (Prnd). We have analyzed the PRNP locus for such tightly linked susceptibility factors. Fifty-six polymorphic sites have been identified within 25 kb of the PRNP open reading frame, including sites within the PRNP promoter and the PRNP 3' untranslated region. These have been characterized in 61 Centre d'Etude du Polymorphisme Humain (CEPH) families, demonstrating extensive linkage disequilibrium around PRNP and the existence of 11 major European PRNP haplotypes. Haplotype frequencies estimated in healthy U.K. control individuals were very similar to those deduced in the CEPH families. A common haplotype was overrepresented in patients with sporadic CJD (sCJD). Through use of a log-linear modeling approach to simultaneously model Hardy-Weinberg and linkage disequilibria, a significant independent association was found between sCJD and a polymorphism upstream of PRNP exon 1 (P=.005), in addition to the strong susceptibility conferred by codon 129 (P=2x10(-8)). However, although our sample size was necessarily small, no association was found between these polymorphisms and vCJD or iatrogenic CJD, in keeping with their having distinct disease mechanisms. In addition, there was no evidence of a PRNP founder effect in the first reported geographical cluster of vCJD.  相似文献   

10.
Prion protein and the transmissible spongiform encephalopathies   总被引:4,自引:0,他引:4  
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that occur in a wide variety of mammals. In humans, TSE diseases include kuru, sporadic and iatrogenic Creutzfeldt-Jakob disease (CJD), Gerstmann-Str?ussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). So far, TSE diseases occur only rarely in humans; however, scrapie is a widespread problem in sheep, and the recent epidemic of bovine spongiform encephalopathy (BSE or mad cow disease) has seriously affected the British cattle industry. Of special concern is the recent appearance of a new variant of CJD in humans that is suspected of being caused by infections from BSE-infected cattle products. In all these diseases, an abnormal form of a host protein, prion protein (PrP), is essential for the pathogenic process. The relationship of this protein to the transmissible agent is currently the subject of great interest and controversy and is the subject of this review.  相似文献   

11.
Prion diseases are rare and fatal neurodegenerative disorders that can be sporadic, inherited or acquired by infection. Based on a national surveillance program in the Netherlands we describe here the clinical, neuropathological, genetic and molecular characteristics of 162 patients with neuropathologically confirmed prion disease over a 12-year period (1998-2009). Since 1998, there has been a relatively stable mortality of Creutzfeldt-Jakob disease (CJD) in the Netherlands, ranging from 0.63 to 1.53 per million inhabitants per annum. Genetic analysis of the codon 129 methionine/valine (M/V) polymorphism in all patients with sporadic CJD (sCJD) showed a trend for under-representation of VV cases (7.0%), compared with sCJD cohorts in other Western countries, whereas the MV genotype was relatively over-represented (22,4%). Combined PrP(Sc) and histopathological typing identified all sCJD subtypes known to date, except for the VV1 subtype. In particular, a "pure" phenotype was demonstrated in 60.1% of patients, whereas a mixed phenotype was detected in 39.9% of all sCJD cases. The relative excess of MV cases was largely accounted for by a relatively high incidence of the MV 2K subtype. Genetic analysis of the prion protein gene (PRNP) was performed in 161 patients and showed a mutation in 9 of them (5.6%), including one FFI and four GSS cases. Iatrogenic CJD was a rare phenomenon (3.1%), mainly associated with dura mater grafts. Three patients were diagnosed with new variant CJD (1.9%) and one with variably protease-sensitive prionopathy (VPSPr). Post-mortem examination revealed an alternative diagnosis in 156 patients, most commonly Alzheimer's disease (21.2%) or vascular causes of dementia (19.9%). The mortality rates of sCJD in the Netherlands are similar to those in other European countries, whereas iatrogenic and genetic cases are relatively rare. The unusual incidence of the VV2 sCJD subtype compared to that reported to date in other Western countries deserves further investigation.  相似文献   

12.
The structural stability of wild-type horse prion protein   总被引:1,自引:0,他引:1  
Prion diseases (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or 'mad-cow' disease) and chronic wasting disease (CWD) in cattles) are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the β2-α2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of horse prion protein. Thus, the region of β2-α2 loop might be a potential drug target region. Besides this very important salt bridge, other four important salt bridges GLU196-ARG156-HIS187, ARG156-ASP202 and GLU211-HIS177 are also found to greatly contribute to the structural stability of horse prion protein. Rich databases of salt bridges, hydrogen bonds and hydrophobic contacts for horse prion protein can be found in this paper.  相似文献   

13.
Variant Creutzfeldt-Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrP(Sc) type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.  相似文献   

14.
《Seminars in Virology》1996,7(3):181-187
Major advances have been made in the understanding of the molecular basis of phenotypic variability in human prion diseases over the last few years. Strong evidence indicates that a complex interaction between specific mutations and the polymorphic codon 129 of the prion protein gene (PRNP) underlies the genetic control of phenotypic expression in familial human prion diseases. Fatal familial insomnia (FFI) and a subtype of familial CJD (CJD178), two prion diseases with different clinico-pathological features, the same mutation at codon 178 ofPRNPbut a different amino acid at codon 129 of the mutantPRNPallele, represent the best characterized example of this complex interplay between thePRNPgenotype and phenotypic variability. Protein studies have subsequently shown that the different genotype of the mutant allele in FFI and CJD178results in the formation of two different protease-resistant prion proteins (PrPres) which differ in size and glycosylation. These biochemical characteristics of PrPresas well as differences among distinct brain regions in the timing and rate of PrPresdeposition and in the vulnerability to PrPresalso appear to be major determinants of phenotypic expression in human prion diseases.  相似文献   

15.
16.
Shamsir MS  Dalby AR 《Proteins》2005,59(2):275-290
Fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD) are associated to the same mutation at codon 178 but differentiate into clinicopathologically distinct diseases determined by this mutation and a naturally occurring methionine-valine polymorphism at codon 129 of the prion protein gene. It has been suggested that the clinical and pathological difference between FFI and CJD is caused by different conformations of the prion protein. Using molecular dynamics (MD), we investigated the effect of the mutation at codon 178 and the polymorphism at codon 129 on prion protein dynamics and conformation at normal and elevated temperatures. Four model structures were examined with a focus on their dynamics and conformational changes. The results showed differences in stability and dynamics between polymorphic variants. Methionine variants demonstrated a higher stability than valine variants. Elongation of existing beta-sheets and formation of new beta-sheets was found to occur more readily in valine polymorphic variants. We also discovered the inhibitory effect of proline residue on existing beta-sheet elongation.  相似文献   

17.
Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.  相似文献   

18.
《Seminars in Virology》1996,7(3):189-200
Prion protein (PrP) amyloidosis is a feature of Gerstmann-Sträussler-Scheinker disease (GSS) and prion protein cerebral amyloid angiopathy (PrP-CAA). GSS and PrP-CAA are associated with point mutations of the prion protein gene (PRNP); there is a broad spectrum of clinical presentations and the main signs are ataxia, spastic paraparesis, extrapyramidal signs and dementia. In GSS, parenchymal amyloid may be associated with spongiform changes or neurofibrillary lesions; in PrP-CAA, vascular amyloid is associated with neurofibrillary lesions. In the two diseases, a major component of the amyloid fibrils is a 7 kDa peptide, approximately spanning residues 81–150 of PrP.  相似文献   

19.

Introduction

The definitive diagnosis of genetic prion diseases (gPrD) requires pathological confirmation. To date, diagnosis has relied upon the finding of the biomarkers 14-3-3 protein and total tau (t-tau) protein in the cerebrospinal fluid (CSF), but many researchers have reported that these markers are not sufficiently elevated in gPrD, especially in Gerstmann-Sträussler-Scheinker syndrome (GSS). We recently developed a new in vitro amplification technology, designated “real-time quaking-induced conversion (RT-QUIC)”, to detect the abnormal form of prion protein in CSF from sporadic Creutzfeldt-Jakob disease (sCJD) patients. In the present study, we aimed to investigate the presence of biomarkers and evaluate RT-QUIC assay in patients with gPrD, as the utility of RT-QUIC as a diagnostic tool in gPrD has yet to be determined.

Method/Principal Findings

56 CSF samples were obtained from gPrD patients, including 20 cases of GSS with P102L mutation, 12 cases of fatal familial insomnia (FFI; D178N), and 24 cases of genetic CJD (gCJD), comprising 22 cases with E200K mutation and 2 with V203I mutation. We subjected all CSF samples to RT-QUIC assay, analyzed 14-3-3 protein by Western blotting, and measured t-tau protein using an ELISA kit. The detection sensitivities of RT-QUIC were as follows: GSS (78%), FFI (100%), gCJD E200K (87%), and gCJD V203I (100%). On the other hand the detection sensitivities of biomarkers were considerably lower: GSS (11%), FFI (0%), gCJD E200K (73%), and gCJD V203I (67%). Thus, RT-QUIC had a much higher detection sensitivity compared with testing for biomarkers, especially in patients with GSS and FFI.

Conclusion/Significance

RT-QUIC assay is more sensitive than testing for biomarkers in gPrD patients. RT-QUIC method would thus be useful as a diagnostic tool when the patient or the patient''s family does not agree to genetic testing, or to confirm the diagnosis in the presence of a positive result for genetic testing.  相似文献   

20.
Clinical and pathological changes in familial Creutzfeldt-Jakob disease (CJD) cases may be similar or indistinguishable from sporadic CJD. Therefore determination of novel mutations in PRNP remains of major importance. We identified two different rare mutations in codon 188 of the prion protein gene (PRNP) in four patients suffering from a disease clinically very similar to the major subtype of sporadic CJD. Both mutations result in an exchange of the amino acid residue threonine for a highly basic residue, either arginine (T188R) or lysine (T188K). The T188R mutation was found in one patient and the T188K mutation in three patients. The prevalence of mutations at codon 188 of PRNP was tested in 593 sporadic CJD cases and 735 healthy individuals. Neither mutation was found. The data presented here argue in favor of T188K being a pathogenic mutation causing genetic CJD. Since one individual with this mutation, who is the father of a clinically affected patient with T188K mutation, is now 79 years old and shows no signs of disease, this mutation is likely associated with a penetrance under 100%. Further observations will have to show whether T188R is a pathogenic mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号