首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different crude microbial proteases were applied for chitin extraction from shrimp shells. A Box–Behnken design with three variables and three levels was applied in order to approach the prediction of optimal enzyme/substrate ratio, temperature and incubation time on the deproteinization degree with Bacillus mojavensis A21 crude protease. These optimal conditions were: an enzyme/substrate ratio of 7.75 U/mg, a temperature of 60 °C and an incubation time of 6 h allowing to predict 94 ± 4% deproteinization. Experimentally, in these optimized conditions, a deproteinization degree of 88 ± 5% was obtained in good agreement with the prediction and larger than values generally given in literature. The deproteinized shells were then demineralized to obtain chitin which was converted to chitosan by deacetylation and its antibacterial activity against different bacteria was investigated. Results showed that chitosan dissolved at 50 mg/ml markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested.  相似文献   

2.
Wound healing properties of chitosan with different molecular weight and degree of deacetylation ranges have been examined. The macroscopic image and histopathology were examined using chitosan, Fucidin® ointment and to blank. The rate of contraction was evaluated by determination of the unclosed area as a function of time. The treated wounds were found to contract at the highest rate with high molecular weight–high degree of deacetylation chitosan-treated rats as compared to untreated, treated, and Fucidin® ointment-treated rats. Wounds treated with high molecular weight chitosan had significantly more epithelial tissue (p < 0.05) than wounds with any other treatment and the best re-epithelization and fastest wounds closure were found with the high molecular weight chitosan treatment group. Histological examination and collagenase activity studies revealed advanced granulation tissue formation and epithelialization in wounds treated with high molecular weight chitosan (p < 0.05). High molecular weight with high degree of deacetylation chitosan samples therefore demonstrates potential for use as a treatment system for dermal burns.  相似文献   

3.
In this study, chitosan was used as a flocculant to harvest freshwater microalgae Chlorella vulgaris. The recovery efficiency of C. vulgaris was tested at various chitosan concentrations. 120 mg/L of chitosan showed the highest efficiency (92 ± 0.4%) within 3 min. The maximum concentration factor of 10 was also achieved at this dose of chitosan. The harvesting efficiency was pH dependent. pH 6.0 showed the highest harvesting efficiency (99 ± 0.5%). Measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that a biopolymer, chitosan, can be a promising flocculant due to its high efficacy, low dose requirements, and short settling time.  相似文献   

4.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

5.
Chitosan cross-linked cellulose fibers were prepared using non-toxic procedures in order to confer antimicrobial properties to cellulose fibers. Citric acid was used as the cross-linker and NaH2PO4 as catalyst in previously UV-irradiated cellulose fibers. Further heat dried-cure process and washing with detergent, water and acetic acid (0.1 M) gave a maximum incorporation of chitosan of 27 mg per gram of functionalized textile. The thermogravimetric analysis of the material with the highest chitosan content showed an increased thermal stability compared to cellulose and chitosan. The UV-irradiation induced morphological changes, such as less entangled cellulose fibers, as observed by scanning electron microscopy, which was prompted to enhance the chitosan incorporation. The biomass and spore germination percentage of Penicillium chrysogenum and colony forming units per millilitre for Escherichia coli decreased significantly on the composed materials as compared to raw cellulose fiber and it was similar to that obtained with a commercial antimicrobial cellulose fiber.  相似文献   

6.
Galactosylated chitosan (GC) was prepared by reacting lactobionic acid with water-soluble chitosan. GC was labeled with fluorine-18 by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. After rapid purification with HiTrap desalting column, [18F]FB-GC was obtained with high radiochemical purity (>97%) determined by radio-HPLC. The total reaction time for [18F]FB-GC was about 150 min. Typical decay-corrected radiochemical yield was about 4–8%. Ex vivo biodistribution in normal mice showed that [18F]FB-GC had moderate activity accumulation in liver with very good retention (11.13 ± 1.63, 10.97 ± 1.90 and 10.77 ± 0.95% ID/g at 10, 60, 120 min after injection, respectively). The other tissues except kidney showed relative low radioactivity accumulation. The high liver/background ratio affords promising biological properties to get clear images. The specific binding of this radiotracer to the ASGP receptor was confirmed by blocking experiment in mice. Compared with the non-blocking group the hepatic uptake of [18F]FB-GC significantly declined in all selected time points. The better liver retention properties of [18F]FB-GC than that of albumin based imaging agents may improve imaging quality and simplify pharmacokinetic model of liver function in the future application with PET imaging.  相似文献   

7.
This research reports the fabrication of silver nanoparticles (AgNPs) from endophytic fungus, Amesia atrobrunnea isolated from Ziziphus spina-christi (L.). Influencing factors for instance, thermal degree of incubation, media, pH, and silver nitrate (AgNO3) molarity were optimized. Then, the AgNPs were encapsulated with chitosan (Ch-AgNPs) under microwave heating at 650 W for 90 s. Characterization of nanoparticles was performed via UV–visible (UV–vis) spectrophotometer, Fourier-transform infrared spectrophotometer (FTIR), zeta potential using dynamic-light scattering (DLS), and field-emission-scanning electron microscope (FE-SEM). Anti-fungal activity of Ch-AgNPs at (50, 25, 12.5, 6.25 mg/L) was tested against Fusarium oxysporum, Curvularia lunata, and Aspergillus niger using the mycelial growth inhibition method (MGI). Results indicated that Czapek-dox broth (CDB) with 1 mM AgNO3, an acidic pH, and a temperature of 25–30 °C were the optimum for AgNPs synthesis. (UV–vis) showed the highest peak at 435 nm, whereas Ch-AgNPs showed one peak for AgNPs at 405 nm and another peak for chitosan at 230 nm. FTIR analysis confirmed that the capping agent chitosan was successfully incorporated and interacted with the AgNPs through amide functionalities. Z-potential was −19.7 mV for AgNPs and 38.9 mV for Ch-AgNPs, which confirmed the significant stability enhancement after capping. FES-SEM showed spherical AgNPs and a reduction in the nanoparticle size to 44.65 nm after capping with chitosan. The highest mycelial growth reduction using fabricated Ch-AgNPs was 93% for C. lunata followed by 77% for A. niger and 66% F. oxysporum at (50 mg/L). Biosynthesis of AgNPs using A. atrobrunnea cell-free extract was successful. Capping with chitosan exhibited antifungal activity against fungal pathogens.  相似文献   

8.
White spot syndrome virus (WSSV) is a highly pathogenic and prevalent virus infecting shrimp and other crustaceans. The potentiality of binary ethylenimine (BEI)-inactivated WSSV against WSSV in crayfish, Procambarus clarkii, was investigated in this study. Efficacy of BEI-inactivated WSSV was tested by vaccination trials followed by challenge of crayfish with WSSV. The crayfish injected with BEI-inactivated WSSV showed a better survival (P < 0.05) to WSSV on the 7th and 21st day post-vaccination (dpv) compared to the control. Calculated relative percent survival (RPS) values were 77% and 60% on the 7th and 21st dpv for 2 mM BEI-inactivated WSSV, and 63%, 30% on 7th and 21st dpv for 3 mM BEI-inactivated WSSV. However, heat-inactivated WSSV did not provide protection from WSSV even on 7th dpv. In the inactivation process WSSV especially their envelope proteins maybe changed as happened to 3 mM BEI and heat-inactivated WSSV particles. These results indicate the protective efficacy of BEI-inactivated WSSV lies on the integrity of envelope proteins of WSSV and the possibility of BEI-inactivated WSSV to protect P. clarkii from WSSV.  相似文献   

9.
Cellulose and chitosan were mixed in N-methylmorpholine-N-oxide (NMMO) and heated to 100 °C, and then were processed under a pressure of 70 kg/cm2 exerted by a compression molding machine at 100 °C for 8 min. As a result, transparent orange viscose films were obtained. After rinsing with deionized water and drying transparent yellowish blend films were obtained. Scanning electron microscope (SEM) indicated that when the chitosan content in the blend increased up to 3% the surface structure became smoother, but the film containing 5% (w/w) chitosan, became coarse again probably due to phase separation. Tensile strength test results were consistant with this. Antibacterial assessment proved that addition of chitosan to the films results in slight antibacterial properties. The halo zone test confirmed that the blend films made in this research have non-diffusible antibacterial properties.  相似文献   

10.
Substituted polyaniline/chitosan(PANIs/Ch) composites were chemically synthesized by using ammonium peroxydisulfate as oxidant and characterized by measurements of conductivity, FTIR, UV–vis, SEM and TGA techniques. FTIR spectra of the composites revealed that there is a strong interaction between substituted polyanilines and chitosan. Among the substituted polyaniline/chitosan composites synthesized, poly(N-ethylaniline)/chitosan PNEANI/Ch has the highest conductivity with a value of 1.68 × 10?4 S/cm. The P2EANI/Ch composite exhibited higher thermal stability than the other composites. SEM images of the composites showed an agglomerated granular morphology of substituted polyaniline particles coated on the surface of chitosan.  相似文献   

11.
Chitin and chitosan microparticles (MPs) are important immune system stimulators. The aim of this study was to evaluate the protective effects of these compounds in comparison with each other against Leishmania infection in BALB/c mice infected with Leishmania major (L. major).Female BALB/c mice were injected subcutaneously with 2 × 105 promastigotes. Chitin and/or chitosan MPs (< 40 μm) were subcutaneously injected in the BALB/c mice with two-day intervals until two weeks. Mice in all groups were sacrificed at 12 weeks post-infection. Enumeration of viable parasites was performed using limiting dilution assay. Furthermore, the animals (5 mice/group) were sacrificed two weeks post-infection. The lymph node cells were isolated and the effects of the chitinous MPs on the proliferation and production of cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) were determined. The mean sizes of lesions were significantly smaller in chitin (0.6 ± 0.12 mm) and chitosan treated groups (1.2 ± 0.8 mm) than in the control group (6.2 ± 1.7 mm) (P < 0.05). The parasite load in the lymph nodes of the treated mice was significantly lower than that in the lymph nodes of controls (1.31 × 106 vs 8.24 × 107 parasite/lymph node [P = 0.032] and 7.49 × 106 vs 8.24 × 107 parasite/lymph node [P = 0.05] for chitin and chitosan MPs treatment, respectively). We found that chitinous MPs induced cell proliferation and that chitin but not chitosan increased TNF-α and IL-10 production. Chitin appears that it has more effect than chitosan against leishmaniasis. The current study revealed that chitinous MPs had significant activity against L. major and could be considered as new therapeutic modality in leishmaniasis.  相似文献   

12.
Chitosan is a deacetylated form of the polysaccharide chitin. Over the last decade, researchers have employed reductive amination to hydrophobically modify chitosan to induce a micellar structure. These micellar polymers have been used for a variety of purposes including drug delivery and enzyme immobilization and stabilization. However, commercial sources of chitosan vary in their degree of deacetylation and there remains a paucity of information regarding how this can impact the modified polymer’s functionality for enzyme immobilization. This paper, therefore, evaluates the effect that the degree of deacetylation has on the hydrophobic modification of medium molecular weight chitosan via reductive amination with long chain aldehydes and the resulting changes in enzyme activity after the immobilization of glucose oxidase in the micellar polymeric structure. The chitosan was deacetylated to differing degrees via autoclaving in 40–45% NaOH solutions and characterized using NMR, viscosity measurements, and differential scan calorimetry. Results suggest that a high degree of deacetylation provides optimal enzyme immobilization properties (i.e. high activity), but that the deacetylation method begins to significantly decrease the polymer molecular weight after a 20 min autoclave treatment, which negatively affects immobilized enzyme activity.  相似文献   

13.
Proton conducting biopolymer networks have potential use for bio-sensors. The cost-effective, non-hazardous and environmentally safe biopolymer, such as chitosan, is an attractive feature for bio-sensors. Cholesterol oxidase was immobilized in conducting network via complexation of chitosan with alginic acid. A method for the preparation of the complex along with characterization by elemental analysis, FTIR spectroscopy, TGA and DSC were reported. The proton conductivity chitosan–alginic acid network was studied via impedance spectroscopy under humidified condition. The complex polymer electrolyte with x = 1 exhibited maximum proton conductivity of 1.4 × 10?3 S/cm at RT, RH  50%. The potential use of this network in enzyme immobilization was studied by manufacturing cholesterol oxidase entrapped polymer networks. Additionally, the maximum reaction rate (Vmax) and Michaelis–Menten constant (Km) were investigated for the immobilized cholesterol oxidase. Also, temperature and pH optimization studies were performed, and operational stability and shelf life of the polymer network were examined.  相似文献   

14.
Chitosan/carboxymethyl cashew gum microspheres (CH/CMCG) were prepared with carboxymethyl cashew gum with two different degrees of substitution (DS) and loaded with bovine serum albumin (BSA). In water, for microspheres formed using low molar mass chitosan (LCH) sample swelling was observed for both CMCG samples and CMCG sample with higher DS showed greater swelling. Using high molar mass chitosan (HCH) sample swelling was observed only for microsphere with high DS of CMCG (DS = 0.44). At pH 7.4, the HCH sample led to a lower degree of swelling. The diffusion coefficients Dv were higher for the higher DS of CMCG in both media and the HCH sample had a lower Dv than LCH one. Faster BSA release rates were observed for beads prepared with the higher DS, whereas those prepared with DS = 0.16 took twice the time to reach similar release profiles. All microsphere systems investigated had a non-Fickian BSA release mechanism.  相似文献   

15.
Red swamp crayfish (Procambarus clarkii) and signal crayfish (Pacifastacus leniusculus) are two invasive freshwater species with a worldwide distribution. The objective of this work was to investigate how the two species move and use space in an area of recent coexistence. Simultaneously, we test the use of new tools and indices to describe their movement patterns. To accomplish this we performed a radio-tracking program within a river-type habitat during two different periods (September/October 2010 and June/July 2013). We used spatial analysis tools to map crayfish radio-location data with and without accounting for the curvature of the river. To assess the consistency of the direction of movement and of the distances traveled by crayfish, two indices were developed. To assess the habitat preferences of each species we applied Ivlev's Electivity Index and the Standardized Forage Ratio. Movement of P. clarkii and P. leniusculus differed. The average detected movement was 8.8 m day−1 for P. clarkii and 17.5 m day−1 for P. leniusculus. However, crayfish behavior ranged from almost complete immobility – sometimes during several days – to large movements, in half a day, up to a maximum of 255 m for P. clarkii and 461 m for P. leniusculus. The proportion of upstream or downstream movements was independent of the species and both species displayed no preference for either direction. The indices of consistency of movement showed a large interindividual variation. Species and period (2010 or 2013) affected the mean daily distance traveled, maximum observed distance from location of release and percentage of observations under vegetation cover. The Ivlev's Electivity Index and the Standardized Forage Ratio presented similar results. P. clarkii showed a preference for pool areas with riparian vegetation cover while P. leniusculus preferred riffle and pool areas with riparian vegetation cover. Our work provided new and valuable data for modeling the active dispersal of these two problematic invaders in a context of coexistence.  相似文献   

16.
Clarification is an important step in the fruit juice processing industry. In this study, chitosan from shrimp shells is proposed as an alternative aid for passion fruit juice clarification being a natural and environmental friendly adsorbent. Experiments were carried out in Jar tests varying chitosan concentration, pH, and slow velocity speed and time. The obtained results were evaluated in terms of turbidity, color, total soluble solids (TSSs), and viscosity reductions. The best condition found in these tests for chitosan treatment was compared with centrifugation and enzymatic treatments. Two different rotation speeds (4000 and 12,000 rpm) were applied for the centrifugation process. Enzymatic treatment was carried out with 1 mL L?1 of Pectinex 3X L (Novo Nordisk, Switzerland) for 90 min, at 50 °C. The enzymatic treatment was reliable only for viscosity reduction, while the chitosan treatment after a mild centrifugation showed the best result for passion fruit clarification.  相似文献   

17.
《Process Biochemistry》2014,49(12):2107-2113
Chitosanase-coated silica-gels were prepared via cross-linking of the chitosanase onto silica-gels for the efficient production of multisize chitooligosaccharides (MCOs) in a continuous process. The kinetic aspects of immobilized chitosanase (IMMCTase) were investigated based on the reaction time, production of MCOs, and MALDI-TOF mass analyses to achieve maximum bioconversion of high molecular weight chitosan (HMWC) to MCOs. IMMCTase revealed a negligible loss of chitosanase activity after multi uses in continuous digestion of HMWC. The optimal temperature of IMMCTase was 37 °C, and kinetic parameters toward HMWC were determined to be Km = 1.45 mM and Vmax = 360 μmole/μg/min, respectively. Under optimal conditions, the recovery of enzyme activity of IMMCTase was determined to be 82.3%, thus indicating that it can still be reused few more times. In conclusion, use of IMMCTase resulted in rapid and efficient digestions of HMWC with consistent results to produce MCOs.  相似文献   

18.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

19.
The reproducibility of the determination of the molecular weight of chitosans in the 90–210 kDa range (Mn) by analytical size exclusion chromatography with multi-angle laser light scattering (SEC-MALLS) was improved by reducing the salt concentration in the mobile phase from (0.3 M acetic acid, 0.2 M sodium acetate, and 0.8 mM sodium azide) to (0.15 M acetic acid, 0.1 M sodium acetate, and 0.4 mM sodium azide) using Tosoh TSKgel G6000PWXL and G5000PWXL columns in series. The variability of measured molecular weight was significantly reduced by lowering the acetate concentration in the mobile phase, while the average molecular weight did not change significantly. The coefficient of variation of the number-average molecular weight, CV(Mn), decreased from 7–12% to 3–6% upon mobile phase dilution. This reduced variability in molecular weight of chitosans obtained from SEC is a significant improvement when precise values of chitosan molecular weight are required, for example in stability studies where viscosity changes in concentrated chitosan solutions are assessed, and in gene delivery applications.  相似文献   

20.
The paper deals with the synthesis of organic–inorganic hybrid membranes, Hy, obtained by simultaneous grafting and crosslinking of chitosan with epoxy-terminated polydimethylsiloxane and γ-glycidoxypropyltrimethoxysilane. Porous membranes, HyP, were also obtained by acid decomposition, at different temperatures (25 and 50 °C), of calcium carbonate porogenic agent trapped inside the material. As proved by electron and atomic force microscopy, the non-porous membrane is a phase segregated material with spherical domains (10–40 μm) of silica core covered by hydrophobic siloxane in a hydrophilic chitosan matrix. The porous membranes showed different morphologies with irregular circular pores of 10–30 μm diameters for the membranes obtained at lower temperature, while the membranes prepared at 50 °C tend to adopt a plan-parallel porosity. The water contact angles of hybrid membranes (78°) and pure chitosan membranes (72°) indicated a lower hydrophilic character of modified chitosan. As a result of the crosslinking and of increased hydrophobicity, the hybrid membranes were characterized by a smaller water swelling degree (about 30%) as compared to pure chitosan membrane (700%). However, the presence of the pores in HyP membranes determined an increase of the water adsorption (maximum swelling degree, about 100%). The hybrid membranes possess a slightly higher thermal stability as compared to chitosan (first initial decomposition temperature, 147 and 175 °C for chitosan and hybrid membranes, respectively), but a lower one as compared to pure polydimethylsiloxane. The high storage modulus of chitosan (about 5.1 × 109 Pa at 20 °C) is decreased by about one order of magnitude by the introduction of the highly flexible polysiloxane and the hybrid membranes are more flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号