首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究中国人家族性肥厚型心肌病(HCM)的致病基因突变位点,分析基因型与临床表型的相互关系,文章在1个中国汉族HCM家系中进行心脏肌钙蛋白T(TNNT2)基因、心脏肌球蛋白结合蛋白C(MYBPC3)基因和心脏β-肌球蛋白重链(MYH7)基因的突变筛查,聚合酶链式反应(PCR)扩增基因功能区外显子片段并对PCR产物进行测序分析.结果表明:在该家系接受调查的7名成员中有4名成员携带MYH7基因c.1273G>A杂合突变,该突变位点位于MYH7基因的14号外显子并使425位的甘氨酸(Gly)转换为精氨酸(Arg).该突变首次在国内HCM家系中发现,突变携带者的临床表型在家系内部呈现明显的异质性.该家系成员TNNT2及MYBPC3基因未发现突变且正常对照组相同位置未发现异常.MYH7基因是我国家族性HCM的致病基因之一,携带c.1273G>A突变的肥厚型心肌病患者临床表型差异明显,提示可能有其它因素参与了肥厚型心肌病的发展过程.  相似文献   

2.
肥厚型心肌病的致病分子机制研究进展   总被引:1,自引:0,他引:1  
Song YR  Liu Z  Gu SL  Qian LJ  Yan QF 《遗传》2011,33(6):549-557
肥厚型心肌病(Hypertrophic cardiomyopathy,HCM)是以左心室及室间隔不对称肥厚为基本特征的原发性心肌病,其发病率约为0.2%,是青少年和运动员心源性猝死的最常见原因。HCM的发病年龄、发病程度和猝死风险等临床表型具有多样性,通常呈常染色体显性遗传。目前已报道的HCM相关突变超过900种,主要定位在β肌球蛋白重链基因、肌球蛋白结合蛋白C基因、心脏肌钙蛋白T基因等13个心脏肌节蛋白基因;另一方面,越来越多的研究显示线粒体基因突变与HCM发生相关。文章在简单介绍HCM形态学特征及临床表型的基础上,着重综述了HCM的致病分子机制及其最新研究进展。  相似文献   

3.
MYBPC3基因突变是家族性肥厚型心肌病的原因之一。本文对心脏肌球蛋白结合蛋白C基因(cardic myosin binding protein C,MYBPC3)及其编码蛋白(c My BP-C)进行生物信息学分析。运用生物信息学相关数据库和在线生物学软件分析MYBPC3基因的结构与突变位点,对c My BP-C蛋白分子物种间的序列同源性、蛋白质空间结构、理化性质、组织特异性、蛋白质翻译后修饰、蛋白质相互作用网络进行分析。结果表明人MYBPC3基因mRNA全长为4 217 bp,编码区为3 825 bp,MYBPC3基因编码1 274个氨基酸组成的多肽,与物种进化程度一致,属于免疫球蛋白超家族,是酸性亲水蛋白,稳定性不高,其主要二级结构元件为随机卷曲。与c My BP-C存在相互作用的基因和蛋白主要是磷酸激酶与肌小节组成成分。本文对MYBPC3基因进行生物信息学分析,为深入研究MYBPC3基因的分子功能以及靶向治疗遗传性心肌病提供一定的依据。  相似文献   

4.
对一个中国汉族Gilbert综合征遗传家系致病基因突变位点进行鉴定,以期了解该病的分子遗传学基础。首先提取先证者基因组DNA,PCR扩增尿苷二磷酸葡萄糖醛酸转移酶UGT1A1基因的5个外显子,以琼脂糖电泳鉴定PCR产物,纯化后直接测序鉴定。基因扫描显示,与血清胆红素水平密切相关的UGT1A1基因在第1和第5外显子存在纯合突变,而 UGT1A1基因启动子区域和内含子/外显子剪接边界位点序列未检测到突变。进一步对其他家系成员该基因的相应位点进行突变检测,结果显示他们在第1和第5外显子也存在杂合突变,其中还有两个成员在启动子区域检测到(TA)插入突变。对家系成员未抗凝新鲜血液进行生化检测证实了基因突变分析的结果。综合以上结果发现该家系三种突变并存,致病因素为第1和/或第5外显子突变,为显性遗传,两种突变位点纯合导致先证者出现严重胆红素代谢功能障碍。该家系因此成为Gilbert综合征突变位点及其致病机理研究的一个典型临床病例。  相似文献   

5.
Waardenburg综合征Ⅱ型患者MITF基因突变分析   总被引:1,自引:0,他引:1  
Waardenburg综合征(WS)是临床上常见的常染色体显性遗传性耳聋综合征, MITF基因突变与部分Waardenburg 综合征Ⅱ型(WS2)病例的发病有关。MITF属于碱性螺旋-环-螺旋亮氨酸拉链转录因子家族, 能调节酪氨酸酶基因, 参与黑色素细胞的分化。文章报道了1个携带MITF基因点突变的3代Waardenburg综合征Ⅱ型中国家系。先证者表现为先天性重度感音神经性聋、虹膜异色、面部雀斑; 其他家系成员除一名仅表现为先天性耳聋外, 均表现为颜面、上肢雀斑和/或早白发。患者可检测到c.639delA杂合突变, 该突变在MITF基因第7外显子上产生了终止密码子(p.I220X), 突变产生的截短的MITF蛋白没有DNA结合活性。该突变是WS2病例中第3个位于MITF第7外显子的突变, 尚未见报道。该突变与已报道的位于第7外显子其他两个突变仅相差1个碱基, 氨基酸改变十分相似, 但在表型上有显著差别, 提示遗传背景对WS临床表型有重要影响。  相似文献   

6.
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)的分子遗传学基础为基因突变。本研究旨在建立一种用于HCM致病相关基因热点突变位点的Taqman-MGB实时荧光PCR检测方法。以HCM患者基因组为模板,根据设计好的引物进行PCR扩增,分别构建5个与HCM致病相关热点突变位点(MYH7-c.1987CT、TNNI3-c.370GC、MYH7-c.2155CT、TNNI3-c.433CG和PRKAG2-c.298GA)的野生型、纯合突变型和杂合突变型阳性质控品。以阳性质控品为模板,对5对引物和探针组合物的灵敏性、重复性和特异性进行验证。研究结果表明,对阳性质控品10倍梯度稀释(10~(-1)~10~(-7)),PCR扩增标准曲线R~20.996;批间和批内重复性验证其变异系数均小于2%;特异性验证显示,探针与模板匹配的荧光信号较强。以上结果表明,引物探针组合物的灵敏性、重复性和特异性较好。此外,以阳性HCM患者基因组为模板,对引物探针组合物进行回复性验证,其检测结果与毛细管电泳一致。综上所述,本研究利用Taqman-MGB实时荧光PCR检测技术,建立了经济、快速、灵敏的HCM热点突变位点检测方法。该方法的建立,有助于HCM临床分子诊断、治疗和愈后评估。  相似文献   

7.
目的:研究中国汉族肥厚型心肌病人群中α-Galactosidase A突变的患病率及其临床表现。方法:对439名肥厚型心肌病患者及156名健康对照GLA基因进行全外显子测序,及基因型及临床表型进行关联分析。结果:确定了2个致病性突变,包括1个错义突变E66Q和1个剪接位点的突变c.547+1GC。2个突变在156名健康人群未发现,在1000人基因组计划中未报道。确定中国汉族肥厚型心肌病人群中α-Galactosidase A突变0.45%的患病率。结论:Fabry病在中国汉族肥厚型心肌病人群中α-Galactosidase A突变的患病率较低。基因检测有助于Fabry病与肥厚型心肌病的鉴别诊断。  相似文献   

8.
Niu YF  Xiong HL  Wu JJ  Chen Y  Qiao K  Wu ZY 《遗传》2011,33(7):720-724
应用PCR技术结合DNA直接测序方法对8例临床确诊为家族性肌萎缩侧索硬化(Familiar amyotrophic lateral sclerosis,FALS)家系的先证者进行铜锌超氧化物歧化酶基因(SOD1)的突变筛查,在3例先证者中检出2种SOD1基因突变,其中,2例携带了位于4号外显子的错义突变Cys111Tyr(c.332G>A),另1例携带了位于5号外显子的错义突变Gly147Asp(c.440G>A),这2种突变在中国ALS患者中属首次报道。该结果扩大了中国FALS患者的SOD1基因突变谱,对研究中国FALS患者SOD1基因突变特点和分布规律有一定帮助。分析携带这2个突变患者的临床特点,提示Cys111Tyr突变导致的临床表型相对温和,而Gly147Asp突变可导致病情进展较快。该结果有待在更多的病例中进行证实。  相似文献   

9.
[目的]通过全外显子组测序(WES)技术筛选男性性腺功能减退症的致病基因,并对基因突变位点进行生物信息学分析。[方法]收集5例男性性腺功能减退症患者临床及遗传学检测资料。采用WES技术筛选相关致病基因,并通过PCR扩增、Sanger测序以及生物信息学分析等验证突变位点。[结果]先证者1为PROKR2基因c.533G>C(p.W178S)纯合突变,家系验证结果发现其父母均为PROKR2基因c.533G>C(p.W178S)杂合突变携带者,符合常染色体隐性遗传。先证者2为ZFPM2基因c.1498C>G(p.Q500E)杂合突变,生物信息学分析发现,该突变位点编码的氨基酸在不同物种中高度保守,并在人类外显子数据库、参考人群千人基因组1000G、SNP数据库及人群基因组突变频率数据库中未发现该突变位点,该突变经SIFT、Polyphen2和Mutation Taster软件预测结果均为有害。[结论]PROKR2基因c.533G>C(p.W178S)和ZFPM2基因c.1498C>G(p.Q500E)突变可能是男性性腺功能减退症的致病原因。  相似文献   

10.
肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是一种以左心室肥厚为突出特征的常染色体显性遗传病,其发病率为1/500~1/200。目前已发现超过30个基因的1500种突变与该疾病的发生发展相关,致病基因变异连同修饰基因多态性、环境因素等影响因素发挥作用,使得疾病表型极具异质性,临床表现上从无任何症状到心源性猝死均可发生,病理表型主要包括心肌细胞肥大、排列紊乱及纤维化、心肌缺血等。近年来,许多研究致力于探究HCM基因型对表型的影响,并基于遗传背景对HCM的治疗方法进行研发。本文以HCM基因型–表型的关联为重点,从HCM的致病基因、关联影响因素和最新治疗手段等多方面综述了HCM的研究进展,以期为研究HCM的发生发展及治疗方向提供遗传学方面的思路。  相似文献   

11.
Familial hypertrophic cardiomyopathy (HCM) displays autosomal dominant inheritance with incomplete penetration of defective genes. Data concerning the familial occurrence of ventricular preexcitation, i.e. Wolff-Parkinson-White (WPW) syndrome, also indicate autosomal dominant inheritance. In the literature, only a gene mutation on chromosome 7q3 has been described in familial HCM coexisting with WPW syndrome to date. The present paper describes the case of a 7-year-old boy with HCM and coexisting WPW syndrome. On his chromosome 14, molecular diagnostics revealed a C 9123 mutation (arginine changed into cysteine in position 453) in exon 14 in a copy of the gene for beta-myosin heavy chain (MYH7). It is the first known case of mutation of the MYH7 gene in a child with both HCM and WPW. Since no linkage between MYH7 mutation and HCM with WPW syndrome has been reported to date, we cannot conclude whether the observed mutation is a common cause for both diseases, or this patient presents an incidental co-occurrence of HCM (caused by MYH7 mutation) and WPW syndrome.  相似文献   

12.
Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.  相似文献   

13.
About 10% of cases of hypertrophic cardiomyopathy (HCM) evolve into dilated cardiomyopathy (DCM) with unknown causes. We studied 11 unrelated patients (pts) with HCM who progressed to DCM (group A) and 11 who showed "typical" HCM (group B). Mutational analysis of the beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), and cardiac troponin T (TNNT2) genes demonstrated eight mutations affecting MYH7 or MYBPC3 gene, five of which were new mutations. In group A-pts, the first new mutation occurred in the myosin head-rod junction and the second occurred in the light chain-binding site. The third new mutation leads to a MYBPC3 lacking titin and myosin binding sites. In group B, two pts with severe HCM carried two homozygous MYBPC3 mutations and one with moderate hypertrophy was a compound heterozygous for MYBPC3 gene. We identified five unreported mutations, potentially "malignant" defects as for the associated phenotypes, but no specific mutations of HCM/DCM.  相似文献   

14.
Genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM) has been challenging because of the genetic and clinical heterogeneity. To determine the mutation profile of Chinese patients with HCM and to correlate genotypes with phenotypes, we performed a systematic mutation screening of the eight most commonly mutated genes encoding sarcomere proteins in 200 unrelated Chinese adult patients using direct DNA sequencing. A total of 98 mutations were identified in 102 mutation carriers. The frequency of mutations in MYH7, MYBPC3, TNNT2 and TNNI3 was 26.0, 18.0, 4.0 and 3.5 % respectively. Among the 200 genotyped HCM patients, 83 harbored a single mutation, and 19 (9.5 %) harbored multiple mutations. The number of mutations was positively correlated with the maximum wall thickness. We found that neither particular gene nor specific mutation was correlated to clinical phenotype. In summary, the frequency of multiple mutations was greater in Chinese HCM patients than in the Caucasian population. Multiple mutations in sarcomere protein may be a risk factor for left ventricular wall thickness.  相似文献   

15.
The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130 consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14 mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted in the sudden cardiac death (SCD) of the proband at the age of 21 years. Further, a DCM causing novel mutation p.Gly377Ser was identified which resulted in the milder phenotype. The present study shows that there is genetic and phenotypic heterogeneity of cardiomyopathies in Indian population. Further, the location and type of mutation in a given sarcomeric gene determines the severity and phenotypic plasticity in cardiomyopathies.  相似文献   

16.
Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein''s anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.  相似文献   

17.
Background. With the improvement in genetic testing over time, double-heterozygous mutations are more often found by coincidence in families with hypertrophic cardiomyopathy (HCM). Double heterozygosity can be a cause of the wellknown clinical diversity within HCM families. Methods and results. We describe a family in which members carry either a single mutation or are double heterozygous for mutations in myosin heavy chain gene (MYH7) and cysteine and glycine-rich protein 3 (CSRP3). The described family emphasises the idea of a more severe clinical phenotype with double-heterozygous mutations. It also highlights the importance of cardiological screening where NT-proBNP may serve as an added diagnostic tool. Conclusion. With a more severe inexplicable phenotype of HCM within a family, one should consider the possibility of double-heterozygous mutations. This implies that in such families, even when one disease-causing mutation is found, all the family members still have an implication for cardiological screening parallel to extended genetic screening. (Neth Heart J 2009;17:458–63.)  相似文献   

18.
The beta-myosin heavy chain gene (MYH7) encodes the motor protein that drives myocardial contraction. It has been proven to be a disease gene for hypertrophic cardiomyopathy (HCM). We analyzed the DNA sequence variation of MYH7 (about 16 kb) of eight individuals: six patients with HCM and two healthy controls. The overall DNA sequence identity was up to 97.2% compared to Jaenicke and coworkers (Jaenicke et al. [1990] Genomics 8:194-206), while the corresponding amino acid sequences revealed 100% identity. In HCM patients, eleven nucleotide substitutions were identified but no causative disease mutation was found: six were detected in coding, four in intronic, and one in 5' regulatory regions. The average nucleotide diversity across this locus was 0.015% with an average of 0.02% in the coding and 0.012% in the noncoding sequence. Analysis of the kinetic behaviour of beta-MHC in the intact contractile structure of normal individuals and HCM patients revealed apparent rate constants of tension development ranging between 1.58 s(-1) and 1.48 s(-1).  相似文献   

19.
Genetic screening of the beta-myosin heavy chain gene (MYH7) was evaluated in 100 consecutive unrelated patients with hypertrophic cardiomyopathy (HCM) and 200 normal unrelated subjects. Seventeen beta-myosin mutations were identified in 19 patients. Notably, 13, or 76%, were novel. Mutations were detected in both alleles in two patients: homozygous for Lys207Gln in one, and heterozygous for Pro211 Leu and Arg663His in another. No mutation was detected in the controls. MYH7-associated HCM was associated with more marked left atrial enlargement and syncope than non-MYH7-related HCM. Our findings indicate that: (1) screening methods should allow identification of novel mutations; and (2) more than one sarcomeric mutation may be present in a patient more commonly than is appreciated. Further studies are necessary to ascertain the clinical consequences of the novel and compound gene abnormalities, and to determine whether correlating functional domain to phenotype provides more useful information about the clinical significance of the molecular defects.  相似文献   

20.
Novel mutations in sarcomeric protein genes in dilated cardiomyopathy   总被引:11,自引:0,他引:11  
Mutations in sarcomeric protein genes have been reported to cause dilated cardiomyopathy (DCM). In order to detect novel mutations we screened the sarcomeric protein genes beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), troponin T (TNNT2), and alpha-tropomyosin (TPM1) in 46 young patients with DCM. Mutation screening was done using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. The mutations in MYH7 were projected onto the protein data bank-structure (pdb) of myosin of striated muscle. In MYH7 two mutations (Ala223Thr and Ser642Leu) were found in two patients. Ser642Leu is part of the actin-myosin interface. Ala223Thr affects a buried residue near the ATP binding site. In MYBPC3 we found one missense mutation (Asn948Thr) in a male patient. None of the mutations were found in 88 healthy controls and in 136 patients with hypertrophic cardiomyopathy (HCM). Thus mutations in HCM causing genes are not rare in DCM and have potential for functional relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号