首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea turtles have recently been shown to have the sensory ability to use magnetic information for guidance in the open ocean, although the importance of different potential navigational cues remains unknown. Between May and August 2001, we satellite-tracked green turtles, Cheloniamydas, during their >2000-km postnesting migration from Ascension Island to Brazil, following five individuals both during their transoceanic crossing and while on the Brazilian coast. None of the turtles travelled directly to its final destination but, instead, there were extended (up to 792 km) movements along the coast after the oceanic crossings. The extent of movement along the coast was unrelated to the oceanic crossing route. For example, individuals whose final destination was in the north of Brazil did not follow a more northerly oceanic crossing than those with a more southerly final destination. These observations show that green turtles returning from Ascension Island do not swim directly to their final destination, but instead conduct migration in two distinct phases: a fairly direct open ocean crossing, following which they turn north or south along the coast to reach their final destination. This long-distance migration may therefore be conducted without turtles needing to resort to sophisticated navigational skills. These previously unidentified long coastal movements may heighten the risk of turtles being captured by fishermen. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

2.
The diving behaviour of four leatherback turtles (Dermochelys coriacea) was recorded for periods of 0.5-8.1 months during their postnesting movements in the Indian and Atlantic Oceans, when they covered 1569-18,994 km. Dive data were obtained using satellite-linked transmitters which also provided information on the dive depths and profiles of the turtles. Turtles mainly dove to depths < 200 m, with maximum dive durations under 30-40 min and exhibited diel variations in their diving activity for most part of the routes, with dives being usually longer at night. Diurnal dives were in general quite short, but cases of very deep (> 900 m) and prolonged (> 70 min) dives were however recorded only during daytime. The three turtles that were tracked for the longest time showed a marked change in behaviour during the tracking, decreasing their dive durations and ceasing to dive deeply. Moreover, diel variations disappeared, with nocturnal dives becoming short and numerous. This change in turtle diving activity appeared to be related to water temperature, suggesting an influence of seasonal prey availability on their diving behaviour. The turtle diving activity was independent on the shape of their routes, with no changes between linear movements in the core of main currents or looping segments in presence of oceanic eddies.  相似文献   

3.
The open-sea movements of marine animals are affected by the drifting action of currents that, if not compensated for, can produce non-negligible deviations from the correct route towards a given target. Marine turtles are paradigmatic skilful oceanic navigators that are able to reach remote goals at the end of long-distance migrations, apparently overcoming current drift effects. Particularly relevant is the case of leatherback turtles (Dermochelys coriacea), which spend entire years in the ocean, wandering in search of planktonic prey. Recent analyses have revealed how the movements of satellite-tracked leatherbacks in the Indian, Atlantic and Pacific Oceans are strongly dependent on the oceanic currents, up to the point that turtles are often passively transported over long distances. However, leatherbacks are known to return to specific areas to breed every 2–3 years, thus finding their way back home after long periods in the oceanic environment. Here we examine the navigational consequences of the leatherbacks'' close association with currents and discuss how the combined reliance on mechanisms of map-based navigation and local orientation cues close to the target may allow leatherbacks to accomplish the difficult task of returning to specific sites after years spent wandering in a moving medium.  相似文献   

4.
Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution.  相似文献   

5.
Sea turtle movements often occur in open‐sea unsheltered areas, and are therefore likely to be influenced by major oceanographic processes. Only recently has work started to examine the possible relationships of these movements with dynamic oceanic features, and consequently a clear picture of such interaction is only available in a few cases. Newborn sea turtles are thought to rely on oceanic currents to reach their pelagic nursery habitats. The actual extent and timing of these developmental migrations are known for only a few populations, but these movements probably last several years and range over thousands of km. Large juveniles that have been tracked during their pelagic stage were found to make long‐distance movements, sometimes swimming against the prevailing currents. Older juveniles of most species leave the pelagic habitat to recruit to neritic developmental habitats. This is a very poorly documented phase of the sea turtle life‐cycle, and the few available indications show that turtles may have to swim actively for enormous distances to counterbalance their previous drift with the current. The course and extent of adult postnesting migrations vary greatly among different turtle species, but two main patterns are evident. Some species, like green, hawksbill and loggerhead turtles, shuttle between the nesting beach and a specific feeding area used for the entire inter‐reproductive period. In these cases, individuals swim, rather than drift, to complete their journeys, with possible advection due to currents sometimes helping them to quickly reach their target, but sometimes providing navigational challenges. Other species such as the olive ridley and the leatherback turtle, leave the coastal nesting areas to reach the pelagic environment where they forage, and perform wandering movements. Major oceanographic processes (such as main currents and eddies) have been recently shown to have a remarkable influence on leatherback movements, making it questionable whether these journeys are to be considered migrations or, rather, prolonged stays in vast feeding areas.  相似文献   

6.
Satellite telemetry and stable isotope analysis were used to confirm that oceanic areas (where water depths are >200 m) are alternative feeding habitats for adult female green sea turtles (Chelonia mydas), which have been thought to be obligate herbivores in neritic areas (where depths are <200 m). Four females were tagged with satellite transmitters and tracked during post-nesting periods from Ogasawara Islands, Japan. Three females migrated to neritic habitats, while transmissions from another female ceased in an oceanic habitat. The overall mean nighttime dive depths during oceanic swimming periods in two females were <20 m, implying that the main function of their nighttime dives were resting with neutral buoyancy, whereas the means in two other females were >20 m, implying that they not only rested, but also foraged on macroplankton that exhibit diel vertical migration. Comparisons of stable carbon and nitrogen isotope ratios between 89 females and the prey items in a three-source mixing model estimated that 69% of the females nesting on Ogasawara Islands mainly used neritic habitats and 31% mainly used oceanic habitats. Out of four females tracked by satellite, two females were inferred from isotope ratios to be neritic herbivores and the two others oceanic planktivores. Although post-nesting movements for four females were not completely consistent with the inferences from isotope ratios, possibly due to short tracking periods (28–42 days), their diving behaviors were consistent with the inferences. There were no relationships between body size and the two isotope ratios, indicating a lack of size-related differences in feeding habitat use by adult female green turtles, which was in contrast with loggerhead sea turtles (Caretta caretta). These results and previous findings suggest that ontogenetic habitat shifts by sea turtles are facultative, and consequently, their life histories are polymorphic.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
Aim Resources can shape patterns of habitat utilization. Recently a broad foraging dichotomy between oceanic and coastal sites has been revealed for loggerhead sea turtles (Caretta caretta). Since oceanic and coastal foraging sites differ in prey availability, we might expect a gross difference in home‐range size across these habitats. We tested this hypothesis by equipping nine adult male loggerhead sea turtles with GPS tracking devices. Location National Marine Park of Zakynthos (NMPZ) Greece, central and eastern Mediterranean (Adriatic, Ionian and Aegean seas). Methods In 2007, 2008 and 2009, Fastloc GPS‐Argos transmitters were attached to nine male loggerheads. In addition, a Sirtrack PTT unit was attached to one male in 2007. Four of the turtles were tracked on successive years. We filtered the GPS data to ensure comparable data volumes. Route consistency between breeding and foraging sites of the four re‐tracked turtles was conducted. Foraging site home range areas and within site movement patterns were investigated by the fixed kernel density method. Results Foraging home range size ranged between circa 10 km2 at neritic habitats (coastal and open‐sea on the continental shelf) to circa 1000 km2 at oceanic sites (using 90% kernel estimates), the latter most probably reflecting sparsely distributed oceanic prey. Across different years individuals did not follow exactly the same migration routes, but did show fidelity to their previous foraging sites, whether oceanic or neritic, with accurate homing in the final stages of migration. Main conclusions The broad distribution and diverse life‐history strategies of this population could complicate the identification of priority marine protected areas beyond the core breeding site.  相似文献   

8.
Complexity and variation in loggerhead sea turtle life history   总被引:4,自引:0,他引:4       下载免费PDF全文
Juvenile loggerhead sea turtles spend more than a decade in the open ocean before returning to neritic waters to mature and reproduce. It has been assumed that this transition from an oceanic to neritic existence is a discrete ontogenetic niche shift. We tested this hypothesis by tracking the movements of large juveniles collected in a neritic foraging ground in North Carolina, USA. Our work shows that the shift from the oceanic to neritic waters is both complex and reversible; some individuals move back into coastal waters and then return to the open ocean for reasons that are still unclear, sometimes for multiple years. These findings have important consequences for efforts to protect these threatened marine reptiles from mortality in both coastal and open-ocean fisheries.  相似文献   

9.
We investigated the factors providing structure to the helminth communities of 182 loggerhead sea turtles, Caretta caretta, collected in 6 localities from Central and Western Mediterranean. Fifteen helminth taxa (10 digeneans, 4 nematodes and 1 acanthocephalan) were identified, of which 12 were specialist to marine turtles; very low numbers of immature individuals of 3 species typical from fish or cetaceans were also found. These observations confirm the hypothesis that phylogenetic factors restrict community composition to helminth species specific to marine turtles. There were significant community dissimilarities between turtles from different localities, the overall pattern being compatible with the hypothesis that parasite communities reflect the ontogenetic shift that juvenile loggerheads undergo from oceanic to neritic habitats. The smallest turtles at the putative oceanic, pelagic-feeding stage harboured only the 2 digenean species that were regionally the most frequent, i.e. Enodiotrema megachondrus and Calycodes anthos; the largest turtles at the putative neritic, bottom-feeding stage harboured 11 helminth taxa, including 3 nematode species that were rare or absent in turtles that fed partially on pelagic prey. Mean species richness per host was low (range: 1.60–1.89) and did not differ between localities. Variance ratio tests indicated independent colonization of each helminth species. Both features are expected in ectothermic and vagrant hosts living in the marine environment.  相似文献   

10.
Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777-2342 km in 33-47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west-south-westerly flowing current, possibly guided by chemical cues.  相似文献   

11.
The animals from the environments focused on here share the same navigational mechanisms with terrestrial animals. However, some of them seem to rely on additional ways of detecting and/or processing navigational cues, some of which are perhaps still unknown. A classification of the mechanisms of navigation is given. This is based on the source of information that animals use to head for their targets. A selected series of phenomena of current interest is presented, starting with olfactory beaconing in oceanic birds, which allows the detection of patchily distributed food and productive areas from long distances. Animals of sandy beaches rely on an array of mechanisms of orientation, which have an adaptive value for their ecotonal system. As some species are capable of using both the moon and sun compass in orientation, attention and experiments are focused on the significance of these celestial cues in the navigational process. Two clocks of different periods, one of which would appear to regulate both the activity rhythm and the sun compass, are presumed to underlie the two compass mechanisms. The feats of global navigators in and over the oceans are especially puzzling considering their ability of homing to the natal and nesting sites after long lasting, extended wandering in the open ocean, and of pinpointing tiny, isolated oceanic islands. The existent literature allows comparison of the navigational capabilities of oceanic birds with those of sea turtles. Their performances in natural conditions seem to be similar, but sea turtles exhibit a reduced capacity of compensation for experimental relocation. Capacity of positioning based on geomagnetic parameters has been indicated for sea turtles through laboratory experiments, but this is not confirmed by the routes of magnetically disturbed turtles tracked while migrating or attempting to compensate for relocation. Also albatrosses with fitted magnets are not disturbed in their homing.  相似文献   

12.
Mechanisms that determine how, where, and when ontogenetic habitat shifts occur are mostly unknown in wild populations. Differences in size and environmental characteristics of ontogenetic habitats can lead to differences in movement patterns, behavior, habitat use, and spatial distributions across individuals of the same species. Knowledge of juvenile loggerhead turtles' dispersal, movements, and habitat use is largely unknown, especially in the Mediterranean Sea. Satellite relay data loggers were used to monitor movements, diving behavior, and water temperature of eleven large juvenile loggerhead turtles (Caretta caretta) deliberately caught in an oceanic habitat in the Mediterranean Sea. Hidden Markov models were used over 4,430 spatial locations to quantify the different activities performed by each individual: transit, low‐, and high‐intensity diving. Model results were then analyzed in relation to water temperature, bathymetry, and distance to the coast. The hidden Markov model differentiated between bouts of area‐restricted search as low‐ and high‐intensity diving, and transit movements. The turtles foraged in deep oceanic waters within 60 km from the coast as well as above 140 km from the coast. They used an average area of 194,802 km2, where most individuals used the deepest part of the Southern Tyrrhenian Sea with the highest seamounts, while only two switched to neritic foraging showing plasticity in foraging strategies among turtles of similar age classes. The foraging distribution of large juvenile loggerhead turtles, including some which were of the minimum size of adults, in the Tyrrhenian Sea is mainly concentrated in a relatively small oceanic area with predictable mesoscale oceanographic features, despite the proximity of suitable neritic foraging habitats. Our study highlights the importance of collecting high‐resolution data about species distribution and behavior across different spatio‐temporal scales and life stages for implementing conservation and dynamic ocean management actions.  相似文献   

13.
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.  相似文献   

14.
The movement of juvenile loggerhead turtles (n = 42) out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses - Real time) circulation data, and three different vertical strata (0–5 m, 0–40 m, 0–100 m) of HYCOM (HYbrid Coordinate Ocean Model) circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed.  相似文献   

15.
Ocean surface winds drive dynamics of transoceanic aerial movements   总被引:1,自引:0,他引:1  
Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through "wind highways" that do not match the shortest great circle routes. Bird routes closely followed the low-cost "wind-highways" linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns.  相似文献   

16.
Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species' imminent risk of extinction in the Pacific.  相似文献   

17.
夏中荣  古河祥 《四川动物》2012,31(3):435-438,513
自2001年来,惠东港口海龟国家级自然保护区已成功地利用卫星追踪了21只海龟的洄游路线。本文利用美国卫星信号发射器(Tag)和法国Argos系统追踪3只成年雌性绿海龟。跟踪海龟"西沙"和"南沙"26d,二者均在海口市附近海域消失;"东沙"从阳江市海陵岛出发,取东南向至菲律宾,然后沿菲律宾西海岸向南,最后在巴拉望岛西侧海域逗留,共追踪111d。该试验说明港口海龟具有不同的洄游线路,偏爱沿岸的浅海洄游;洄游路线与等温线之间无显著关系;海龟洄游具有明确的目的地。建议政府相关部门采取科学策略来保护海龟。  相似文献   

18.
Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade‐offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual‐based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open‐source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.  相似文献   

19.
Marine turtles use geomagnetic cues during open-sea homing   总被引:1,自引:0,他引:1  
Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.  相似文献   

20.
Sea turtles are known to perform long-distance, oceanic migrations between disparate feeding areas and breeding sites, some of them located on isolated oceanic islands. These migrations demonstrate impressive navigational abilities, but the sensory mechanisms used are still largely unknown. Green turtles breeding at Ascension Island perform long oceanic migrations (>2200 km) between foraging areas along the Brazilian coast and the isolated island. By performing displacement experiments of female green turtles tracked by satellite telemetry in the waters around Ascension Island we investigated which strategies most probably are used by the turtles in locating the island. In the present paper we analysed the search trajectories in relation to alternative navigation strategies including the use of global geomagnetic cues, ocean currents, celestial cues and wind. The results suggest that the turtles did not use chemical information transported with ocean currents. Neither did the results indicate that the turtles use true bi-coordinate geomagnetic navigation nor did they use indirect navigation with respect to any of the available magnetic gradients (total field intensity, horizontal field intensity, vertical field intensity, inclination and declination) or celestial cues. The female green turtles successfully locating Ascension Island seemed to use a combination of searching followed by beaconing, since they searched for sensory contact with the island until they reached positions NW and N of the Island and from there presumably used cues transported by wind to locate the island during the final stages of the search.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号