首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the relaxin-insulin superfamily of peptides that plays important roles in testes descent, oocyte maturation and the control of male germ cell apoptosis. These actions are mediated via a specific G-protein coupled receptor, LGR8. Previous structure-activity studies have shown that the key binding site of INSL3 is situated within its B-chain. Recent studies in our laboratory have led to the identification of a cyclic peptide mimetic 2 of the INSL3 B-chain, which we have shown to compete with the binding of [33P]-relaxin to LGR8 expressed in HEK293T cells, and to inhibit cAMP-mediated signaling in these cells, i.e. it is an antagonist of INSL3. In order to further define the structure-activity relationships of cyclic analogues of the INSL3 B-chain, we used a structure-based approach to design a series of cyclic, disulfide-constrained INSL3 B-chain mimetics. To do this, we first created a model of the 3D structure of INSL3 using the crystal structure of human relaxin as a template. This model of INSL3 was then used as a template to design a series of disulfide-constrained mimetics of the INSL3 B-chain. The peptides were synthesized by solid-phase peptide synthesis using pseudoproline dipeptides to improve the synthesis outcome. Of the seven prepared INSL3 B-chain mimetics, three compounds were found to have partial displacement activity, while four were able to completely displace [33P]-relaxin from LGR8, including compounds that were markedly shorter than compound 2. The best of these, mimetic 6, showed significantly greater affinity for LGR8 than compound 2, but still displayed around 1000-fold less affinity for LGR8 than native INSL3. Analysis of selected mimetics for their alpha-helical content using circular dichroism (CD) spectroscopy revealed that, generally, the mimetics showed less than expected helicity. The inability of the compounds to display true native INSL3 structure is likely contributing to their reduced receptor binding affinity. We are currently examining alternative INSL3 B-chain mimetics that might better present key receptor binding residues in the native INSL3-like conformation.  相似文献   

2.
The peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains. To define the primary INSL3 binding site in LGR8, its LRRs were first modeled on the crystal structure of the Nogo receptor (NgR) and the most likely binding surface identified. Multiple sequence alignment of this surface revealed the presence of seven of the nine residues implicated in relaxin binding to LGR7. Replacement of these residues with alanine caused reduced [(125)I]INSL3 binding, and a specific peptide/receptor interaction point was revealed using competition binding assays with mutant INSL3 peptides. This point was used to crudely dock the solution structure of INSL3 onto the LRR model of LGR8, allowing the prediction of the INSL3 Trp-B27 binding site. This prediction was then validated using mutant INSL3 peptide competition binding assays on LGR8 mutants. Our results indicated that LGR8 Asp-227 was crucial for binding INSL3 Arg-B16, whereas LGR8 Phe-131 and Gln-133 were involved in INSL3 Trp-B27 binding. From these two defined interactions, we predicted the complete INSL3/LGR8 primary binding site, including interactions between INSL3 His-B12 and LGR8 Trp-177, INSL3 Val-B19 and LGR8 Ile-179, and INSL3 Arg-B20 with LGR8 Asp-181 and Glu-229.  相似文献   

3.
The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide- and receptor-dependent.  相似文献   

4.
The human relaxin family comprises seven peptide hormones with various biological functions mediated through interactions with G-protein-coupled receptors. Interestingly, among the hitherto characterized receptors there is no absolute selectivity toward their primary ligand. The most striking example of this is the relaxin family ancestor, relaxin-3, which is an agonist for three of the four currently known relaxin receptors: GPCR135, GPCR142, and LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed predominantly in the brain and have been linked to regulation of stress and feeding. However, to fully understand the role of relaxin-3 in neurological signaling, the development of selective GPCR135 agonists and antagonists for in vivo studies is crucial. Recent reports have demonstrated that such selective ligands can be achieved by making chimeric peptides comprising the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural insights into the consequences of combining A- and B-chains from different relaxins we have determined the NMR solution structure of a human relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain adopts a conformation similar to the relaxin-3 A-chain, and thus has the ability to structurally support a native-like conformation of the relaxin-3 B-chain. These findings suggest that the decrease in activity at the LGR7 receptor seen for this peptide is a result of the removal of a secondary LGR7 binding site present in the relaxin-3 A-chain, rather than conformational changes in the primary B-chain receptor binding site.  相似文献   

5.
Insulin-like peptide 3 (INSL3) is a member of the insulin superfamily that plays an important role in mediating testes descent during fetal development. More recently, it has also been demonstrated to initiate oocyte maturation and suppress male germ cell apoptosis. These actions are mediated via a specific G-protein-coupled receptor, LGR8. Little is known regarding the structure and function relationship of INSL3, although it is believed that the principal receptor binding site resides within its B-chain. We subsequently observed that the linear B-chain alone (INSL3B-(1-31)) bound to LGR8 and was able to antagonise INSL3 stimulated cAMP accumulation in HEK-293T cells expressing LGR8. Sequentially N- and C-terminally shortened linear analogs were prepared by solid phase synthesis and subsequent assay showed that the minimum length required for binding was residues 11-27. It was also observed that increased binding affinity correlated with a corresponding increase in alpha-helical content as measured by circular dichroism spectroscopy. Molecular modeling studies suggested that judicious placement of a conformational constraint within this peptide would increase its alpha-helix content and result in increased structural similarity to the B-chain within native INSL3. Consequently, intramolecularly disulfide-linked analogs of the B-chain showed a potentiation of INSL3 antagonistic activity, as well as exhibiting increased proteolytic stability, as assessed in rat serum in vitro. Administration of one of these peptides into the testes of rats resulted in a substantial decrease in testis weight probably due to the inhibition of germ cell survival, suggesting that INSL3 antagonists may have potential as novel contraceptive agents.  相似文献   

6.
Insulin-like peptide 5 (INSL5) is a peptide that belongs to the relaxin/insulin family, and its receptor has not been identified. In this report, we demonstrate that INSL5 is a specific agonist for GPCR142. Human INSL5 displaces the binding of (125)I-relaxin-3 to GPCR142 with a high affinity (K(i) = 1.5 nM). In a saturation binding assay, (125)I-INSL5 binds GPCR142 with a K(d) value of 2.5 nM. In functional guanosine (gamma-thio)-triphosphate binding and cAMP accumulation assays, INSL5 potently activates GPCR142 with EC(50) values of 1.3 and 1.2 nM, respectively. In addition, INSL5 stimulates Ca(2+) mobilization in HEK293 cells expressing GPCR142 and G alpha(16). Overall, INSL5 behaves as an agonist for GPCR142 similar to relaxin-3. However, unlike relaxin-3, which is also a potent agonist for GPCR135 and LGR7, INSL5 does not activate either GPCR135 or LGR7. INSL5 inhibits (125)I-relaxin-3 binding to GPCR135 with a low potency (K(i) = 500 nM). A functional assay shows that INSL5 (1 microm) is a weak antagonist for GPCR135. In addition, INSL5 (up to 1 microm) shows no affinity or activity at LGR7 or LGR8 either in a binding assay or a bio-functional assay. Previously, we have demonstrated that GPCR142 mRNA is expressed in peripheral tissues, particularly in the colon. Here we show that INSL5 mRNA is expressed in many peripheral tissues, similar to GPCR142. The high affinity interaction between INSL5 and GPCR142 coupled with their co-evolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for GPCR142.  相似文献   

7.
GREAT/LGR8 is the only receptor for insulin-like 3 peptide   总被引:11,自引:0,他引:11  
During male development testes descend from their embryonic intraabdominal position into the scrotum. Two genes, encoding the insulin-like 3 peptide (INSL3) and the GREAT/LGR8 G protein-coupled receptor, control the differentiation of gubernaculum, the caudal genitoinguinal ligament critical for testicular descent. It was established that the INSL3 peptide activates GREAT/LGR8 receptor in vitro. Mutations of Insl3 or Great cause cryptorchidism (undescended testes) in mice. Overexpression of the transgenic Insl3 causes male-like gubernaculum differentiation, ovarian descent into lower abdominal position, and reduced fertility in females. To address the question whether Great deletion complements the mutant female phenotype caused by the Insl3 overexpression, we have produced Insl3 transgenic mice deficient for Great. Such females had a wild-type phenotype, demonstrating that Great was the only cognate receptor for Insl3 in vivo. We have established that pancreatic HIT cells, transfected with the INSL3 cDNA, produce functionally active peptide. Analysis of five INSL3 mutant variants detected in cryptorchid patients showed that P49S substitution renders functionally compromised peptide. Therefore, mutations in INSL3 might contribute to the etiology of cryptorchidism. We have also showed that synthetic insulin-like peptides (INSL4 and INSL6) were unable to activate LGR7 or GREAT/LGR8.  相似文献   

8.
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein-coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.  相似文献   

9.
An efficient solid-phase synthesis protocol has been developed which, together with regioselective sequential formation of the three disulfide bonds, enabled the preparation of specifically monolanthanide (europium)-labeled human insulin-like peptide 3 (INSL3) for the study of its interaction with its G-protein-coupled receptor, RXFP2, via time-resolved fluorometry. A commercially available chelator, diethylene triamine pentaacetic acid (DTPA), was coupled to the N-terminus of the INSL3 A-chain on the solid phase, and then a coordination complex between europium ion and DTPA was formed using EuCl 3 to protect the chelator from production of an unidentified adduct during subsequent combination of the A- and B-chains. The labeled peptide was purified in high yield using high-performance liquid chromatography with nearly neutral pH buffers to prevent the liberation of Eu (3+) from the chelator. Using time-resolved fluorometry, saturation binding assays were undertaken to determine the binding affinity (p K d) of labeled INSL3 for RXFP2 in HEK-293T cells stably expressing RXFP2. The dissociation constant of DTPA-labeled INSL3 (9.05 +/- 0.03, n = 3) that was obtained from saturation binding experiments was comparable to that of (125)I-labeled INSL3 (9.59 +/- 0.09, n = 3). The receptor binding affinity (p K i) of human INSL3 was determined to be 9.27 +/- 0.06, n = 3, using Eu-DTPA-INSL3 as a labeled ligand, which again is similar to that obtained when (125)I-INSL3 was used as labeled ligand (9.34 +/- 0.02, n = 4). This novel lanthanide-coordinated, DTPA-labeled INSL3 has excellent sensitivity, stability, and high specific activity, properties that will be particularly beneficial in high-throughput screening of INSL3 analogues in structure-activity studies.  相似文献   

10.
Relaxin-1 is a heterodimeric peptide hormone primarily produced by the pregnant corpus luteum and/or placenta and is involved in many essential physiological processes centered on its action as a potent extracellular matrix (ECM) remodeling agent. Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is predominantly expressed in the Leydig cells of the testes and is an important mediator of testicular descent. The relaxin-1 equivalent peptide in humans is actually the product of the human RLN2 gene, human 2 (H2) relaxin. Recently identified and thought to be the ancestral relaxin, relaxin-3 is specifically expressed in the nucleus incertus of the mouse and rat brain and is most likely an important neuropeptide. Each of the hormones above act on cell membrane G-protein coupled receptors (GPCRs). The relaxin-1 receptor is leucine-rich repeat-containing GPCR 7 (LGR7) whereas INSL3 acts on the closely related LGR8. These receptors have large extra-cellular domains containing multiple leucine-rich repeats (LRRs) and a unique LDL receptor-like cysteine-rich motif (LDLR-domain). Relaxin-3 will bind and activate LGR7 with 50-fold lower activity than H2 relaxin. Two relaxin-3 selective GPCRs; somatostatin and angiotensin like peptide receptor (SALPR) and GPCR 142 were recently identified, these type I GPCRs are unrelated to LGR7 and LGR8. The discovery and characterisation of these receptors is greatly aiding the quest to unravel the mechanics of these important hormones, however with three other family members, insulin-like peptides 4–6 (INSL4, INSL5 and INSL6) with unknown functions and unidentified receptors, there is still much to be learnt about this hormone family.  相似文献   

11.
Summary Insulin-like peptide 3 (INSL3) is one of ten members of the human insulin superfamily and consists of two peptide chains that contain the characteristic insulin fold and disulfide bond pairings. It is primarily produced in the Leydig cells of the testes, and gene knockout experiments have identified a key biological role as initiating testes descent during foetal development. Its receptor has recently been shown to be a member of the leucine-rich repeat-containing G-protein-coupled receptor family (LGR) and is known as LGR8. Considerable work has recently been undertaken with the aim of studying the mechanism of INSL3 downstream action on responsive cells and, towards this goal, the use of synthetic peptides has proved particularly beneficial. This mini-review outlines how these together with basic structure-function studies are beginning to reveal not only its molecular actions but also its potential new biological actions.  相似文献   

12.
13.
Relaxin peptides are important hormones for the regulation of reproductive tissue remodeling and the renal cardiovascular system during pregnancy. Recent studies demonstrated that two of the seven human relaxin family peptides, relaxin H2 (RLN2) and INSL3, signal exclusively through leucine-rich repeat-containing G protein-coupled receptors, LGR7 and LGR8. Although it was well characterized that an RXXXRXXI motif at the RLN2 B chain confers receptor activation activity, it is not clear what roles RLN2 A chain plays in receptor interaction. Analyses of relaxin family genes on syntenic regions of model tetrapods showed that the A chain of RLN2 orthologs exhibited a greater sequence divergence as compared with the receptor-binding domain-containing B chain, foreshadowing a potential role in receptor interactions; hence, defining receptor selectivity in this fast evolving peptide hormone. To test our hypothesis that select residues in the human RLN2 A chain play key roles in receptor interaction, we studied mutant peptides with residue substitution(s) in the A chain. Here, we showed that alanine substitution at the A16 and A17 positions enhances LGR8-activation activity of RLN2, whereas mutation at the A22-23 region (RLN2A22-23) ablates LGR8, but not LGR7, activation activity. In addition, we demonstrated that the functional characteristics of the RLN2A22-23 mutant are mainly attributed to modifications at the PheA23 position. Taken together, our studies indicated that ThrA16, LysA17, and PheA23 constitute part of the receptor-binding interface of human RLN2, and that modification of these residues has led to the generation of novel human RLN2 analogs that would allow selective activation of human LGR7, but not LGR8, in vivo.  相似文献   

14.
15.
Relaxin-3 is a member of the human relaxin peptide family, the gene for which, RLN3, is predominantly expressed in the brain. Mapping studies in the rodent indicate a highly developed network of RLN3, RLN1, and relaxin receptor-expressing cells in the brain, suggesting that relaxin peptides have important functional roles in the central nervous system. A regioselective disulfide-bond synthesis protocol was developed and used for the chemical synthesis of human (H3) relaxin-3. The selectively S-protected A and B chains were combined by stepwise formation of each of the three insulin-like disulfides via aeration, thioloysis, and iodolysis. Judicious positioning of the three sets of S-protecting groups was crucial for acquisition of synthetic H3 relaxin in a good overall yield. The activity of the peptide was tested against relaxin family peptide receptors. Although the highest activity was demonstrated on the human relaxin-3 receptor (GPCR135), the peptide also showed high activity on relaxin receptors (LGR7) from various species and variable activity on the INSL3 receptor (LGR8). Recombinant mouse prorelaxin-3 demonstrated similar activity to H3 relaxin, suggesting that the presence of the C peptide did not influence the conformation of the active site. H3 relaxin was also able to activate native LGR7 receptors. It stimulated increased MMP-2 expression in LGR7-expressing rat ventricular fibroblasts in a dose-dependent manner and, following infusion into the lateral ventricle of the brain, stimulated water drinking in rats, activating LGR7 receptors located in the subfornical organ. Thus, H3 relaxin is able to interact with the relaxin receptor LGR7 both in vitro and in vivo.  相似文献   

16.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors. Here, we demonstrate that H3 relaxin activates LGR7 but not LGR8. Taking advantage of the overlapping specificity of these three ligands for the two related LGRs, chimeric receptors were generated to elucidate the mechanism of ligand activation of LGR7. Chimeric receptor LGR7/8 with the ectodomain from LGR7 but the transmembrane region from LGR8 maintains responsiveness to relaxin but was less responsive to H3 relaxin based on ligand stimulation of cAMP production. The decreased ligand signaling was accompanied by decreases in the ability of H3 relaxin to compete for (33)P-relaxin binding to the chimeric receptor. However, replacement of the exoloop 2, but not exoloop 1 or 3, of LGR7 to the chimeric LGR7/8 restored ligand binding and receptor-mediated cAMP production. These results suggested that activation of LGR7 by H3 relaxin involves specific binding of the ligand to both the ectodomain and the exoloop 2, thus providing a model with which to understand the molecular basis of ligand signaling for this unique subgroup of G protein-coupled receptors.  相似文献   

17.
Insulin-like 3 (INSL3) hormone plays a crucial role in testicular descent during embryonic development. Genetic ablation of Insl3 or its G protein-coupled receptor (GPCR) Lgr8 causes cryptorchidism in mice. Previously, we identified a nonfunctional T222P mutation of LGR8 in several human patients with testicular maldescent. Using a large population of patients and healthy controls from Italy, we have demonstrated that T222P LGR8 mutation is present only in affected patients (19 T222P/+ of 598 vs. 0/450, P < 0.0001). We have also identified a novel allele of LGR8 (R223K) found in one patient with retractile testes. Both mutations are located in the leucine-rich repeats (LRRs) of GPCR ectodomain. The expression analysis of T222P mutant receptor transfected into 293T cells revealed that the mutation severely compromised GPCR cell membrane expression. The substitution of Thr(222) with the neutral Ser or Ala, or the R223K mutation, did not alter receptor cell membrane expression or ligand-induced cAMP increase. Additional mutations, affecting first leucine in a signature LxxLxLxxN/CxL stretch of LRR (L283F), or the amino acid residues, forming the disulfide bond or coordinating calcium ion in the LDLa module (C71Y and D70Y), also rendered proteins with reduced cell surface expression. The structural alterations of both LRRs and LDLa of the ligand-binding part of LGR8 cause the inability of receptor to express on the cell surface membrane and might be responsible for the abnormal testicular phenotype in patients.  相似文献   

18.
Insulin-like peptide 5 (INSL5) is a recently identified insulin superfamily member. Although it binds to and activates the G-protein coupled receptor, RXFP4, its precise biological function remains unknown. To help determine its function, significant quantities of INSL5 are required. In the present work, three single-chain INSL5 precursors were designed, two of which were successfully expressed in E. coli cells. The expressed precursors were solubilized from inclusion bodies, purified almost to homogeneity by immobilized metal-ion affinity chromatography, and then refolded in vitro. One precursor could be converted to two-chain human INSL5 bearing an extended N-terminus of the A-chain (designated long-INSL5) by sequential Lys-C endoproteinase and carboxypeptidase B treatment. The 6 residue A-chain N-terminal extension of long-INSL5 was subsequently removed by Aeromonas aminopeptidase to yield native INSL5 that was designated short-INSL5. Circular dichroism spectroscopic analysis and peptide mapping showed that the recombinant INSL5s adopted an insulin-like conformation and possessed the expected characteristic insulin-like disulfide linkages. Activity assay showed that both long- and short-INSL5 had full RXFP4 receptor activity compared with chemically synthesized human INSL5. This suggested that extension of the N-terminus of the A-chain of long-INSL5 did not adversely impact upon the binding to or activation of the RXFP4 receptor. However, the single-chain INSL5 precursor was inactive which indicated that a free C-terminus of the B-chain is critical for the activity of INSL5. Our present work thus provides an efficient approach for preparation of INSL5 and its analogs through recombinant expression in E. coli cells.  相似文献   

19.
BACKGROUND/AIMS: Although insulin-like factor 3 (INSL3) and its receptor leucine-rich repeat-containing G protein-coupled receptor 8/G protein-coupled receptor affecting testis descent (LGR8/GREAT) are essential for the gubernacular development, mutations of INSL3 and LGR8/GREAT are infrequent in patients with cryptorchidism (CO), and there is no report documenting a positive association of CO with a polymorphism in INSL3 or LGR8/GREAT. Here, we further examined the relevance of INSL3 and LGR8/GREAT mutations and polymorphisms to the development of CO. METHODS: Sixty-two Japanese CO patients and 60 fertile males were studied. INSL3 was analyzed by direct sequencing and restriction enzyme digestion, and LGR8/GREAT was examined by denaturing high-performance liquid chromatography followed by direct sequencing for exons with abnormal chromatogram patterns. RESULTS: No definitive mutation was identified in both genes. Six polymorphisms were detected in INSL3 or LGR8/GREAT and Thr/Thr genotype of Ala60Thr polymorphism in INSL3 was strongly associated with CO (p=0.0024, odds ratio=5.3, 95% confidence interval=1.7-17). CONCLUSION: The results, in conjunction with the previous data, suggest that mutations of INSL3 and LGR8/GREAT remain rare, and that the Thr/Thr genotype of Ala60Thr polymorphism in INSL3 may constitute a susceptibility factor for the development of CO.  相似文献   

20.
Both relaxin-3 and its receptor (GPCR135) are expressed predominantly in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/GPCR135 in the regulation of stress, feeding, and other potential functions remain to be studied. Because relaxin-3 also activates the relaxin receptor (LGR7), which is also expressed in the brain, selective GPCR135 agonists and antagonists are crucial to the study of the physiological functions of relaxin-3 and GPCR135 in vivo. Previously, we reported the creation of a selective GPCR135 agonist (a chimeric relaxin-3/INSL5 peptide designated R3/I5). In this report, we describe the creation of a high affinity antagonist for GPCR135 and GPCR142 over LGR7. This GPCR135 antagonist, R3(BDelta23-27)R/I5, consists of the relaxin-3 B-chain with a replacement of Gly23 to Arg, a truncation at the C terminus (Gly24-Trp27 deleted), and the A-chain of INSL5. In vitro pharmacological studies showed that R3(BDelta23-27)R/I5 binds to human GPCR135 (IC50=0.67 nM) and GPCR142 (IC50=2.29 nM) with high affinity and is a potent functional GPCR135 antagonist (pA2=9.15) but is not a human LGR7 ligand. Furthermore, R3(BDelta23-27)R/I5 had a similar binding profile at the rat GPCR135 receptor (IC50=0.25 nM, pA2=9.6) and lacked affinity for the rat LGR7 receptor. When administered to rats intracerebroventricularly, R3(BDelta23-27)R/I5 blocked food intake induced by the GPCR135 selective agonist R3/I5. Thus, R3(BDelta23-27)R/I5 should prove a useful tool for the further delineation of the functions of the relaxin-3/GPCR135 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号