首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Both relaxin-3 and its receptor (GPCR135) are expressed predominantly in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/GPCR135 in the regulation of stress, feeding, and other potential functions remain to be studied. Because relaxin-3 also activates the relaxin receptor (LGR7), which is also expressed in the brain, selective GPCR135 agonists and antagonists are crucial to the study of the physiological functions of relaxin-3 and GPCR135 in vivo. Previously, we reported the creation of a selective GPCR135 agonist (a chimeric relaxin-3/INSL5 peptide designated R3/I5). In this report, we describe the creation of a high affinity antagonist for GPCR135 and GPCR142 over LGR7. This GPCR135 antagonist, R3(BDelta23-27)R/I5, consists of the relaxin-3 B-chain with a replacement of Gly23 to Arg, a truncation at the C terminus (Gly24-Trp27 deleted), and the A-chain of INSL5. In vitro pharmacological studies showed that R3(BDelta23-27)R/I5 binds to human GPCR135 (IC50=0.67 nM) and GPCR142 (IC50=2.29 nM) with high affinity and is a potent functional GPCR135 antagonist (pA2=9.15) but is not a human LGR7 ligand. Furthermore, R3(BDelta23-27)R/I5 had a similar binding profile at the rat GPCR135 receptor (IC50=0.25 nM, pA2=9.6) and lacked affinity for the rat LGR7 receptor. When administered to rats intracerebroventricularly, R3(BDelta23-27)R/I5 blocked food intake induced by the GPCR135 selective agonist R3/I5. Thus, R3(BDelta23-27)R/I5 should prove a useful tool for the further delineation of the functions of the relaxin-3/GPCR135 system.  相似文献   

2.
The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide- and receptor-dependent.  相似文献   

3.
Insulin-like peptide 5 (INSL5) is a peptide that belongs to the relaxin/insulin family, and its receptor has not been identified. In this report, we demonstrate that INSL5 is a specific agonist for GPCR142. Human INSL5 displaces the binding of (125)I-relaxin-3 to GPCR142 with a high affinity (K(i) = 1.5 nM). In a saturation binding assay, (125)I-INSL5 binds GPCR142 with a K(d) value of 2.5 nM. In functional guanosine (gamma-thio)-triphosphate binding and cAMP accumulation assays, INSL5 potently activates GPCR142 with EC(50) values of 1.3 and 1.2 nM, respectively. In addition, INSL5 stimulates Ca(2+) mobilization in HEK293 cells expressing GPCR142 and G alpha(16). Overall, INSL5 behaves as an agonist for GPCR142 similar to relaxin-3. However, unlike relaxin-3, which is also a potent agonist for GPCR135 and LGR7, INSL5 does not activate either GPCR135 or LGR7. INSL5 inhibits (125)I-relaxin-3 binding to GPCR135 with a low potency (K(i) = 500 nM). A functional assay shows that INSL5 (1 microm) is a weak antagonist for GPCR135. In addition, INSL5 (up to 1 microm) shows no affinity or activity at LGR7 or LGR8 either in a binding assay or a bio-functional assay. Previously, we have demonstrated that GPCR142 mRNA is expressed in peripheral tissues, particularly in the colon. Here we show that INSL5 mRNA is expressed in many peripheral tissues, similar to GPCR142. The high affinity interaction between INSL5 and GPCR142 coupled with their co-evolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for GPCR142.  相似文献   

4.
Relaxin-1 is a heterodimeric peptide hormone primarily produced by the pregnant corpus luteum and/or placenta and is involved in many essential physiological processes centered on its action as a potent extracellular matrix (ECM) remodeling agent. Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is predominantly expressed in the Leydig cells of the testes and is an important mediator of testicular descent. The relaxin-1 equivalent peptide in humans is actually the product of the human RLN2 gene, human 2 (H2) relaxin. Recently identified and thought to be the ancestral relaxin, relaxin-3 is specifically expressed in the nucleus incertus of the mouse and rat brain and is most likely an important neuropeptide. Each of the hormones above act on cell membrane G-protein coupled receptors (GPCRs). The relaxin-1 receptor is leucine-rich repeat-containing GPCR 7 (LGR7) whereas INSL3 acts on the closely related LGR8. These receptors have large extra-cellular domains containing multiple leucine-rich repeats (LRRs) and a unique LDL receptor-like cysteine-rich motif (LDLR-domain). Relaxin-3 will bind and activate LGR7 with 50-fold lower activity than H2 relaxin. Two relaxin-3 selective GPCRs; somatostatin and angiotensin like peptide receptor (SALPR) and GPCR 142 were recently identified, these type I GPCRs are unrelated to LGR7 and LGR8. The discovery and characterisation of these receptors is greatly aiding the quest to unravel the mechanics of these important hormones, however with three other family members, insulin-like peptides 4–6 (INSL4, INSL5 and INSL6) with unknown functions and unidentified receptors, there is still much to be learnt about this hormone family.  相似文献   

5.
Relaxin-3 is a member of the human relaxin peptide family, the gene for which, RLN3, is predominantly expressed in the brain. Mapping studies in the rodent indicate a highly developed network of RLN3, RLN1, and relaxin receptor-expressing cells in the brain, suggesting that relaxin peptides have important functional roles in the central nervous system. A regioselective disulfide-bond synthesis protocol was developed and used for the chemical synthesis of human (H3) relaxin-3. The selectively S-protected A and B chains were combined by stepwise formation of each of the three insulin-like disulfides via aeration, thioloysis, and iodolysis. Judicious positioning of the three sets of S-protecting groups was crucial for acquisition of synthetic H3 relaxin in a good overall yield. The activity of the peptide was tested against relaxin family peptide receptors. Although the highest activity was demonstrated on the human relaxin-3 receptor (GPCR135), the peptide also showed high activity on relaxin receptors (LGR7) from various species and variable activity on the INSL3 receptor (LGR8). Recombinant mouse prorelaxin-3 demonstrated similar activity to H3 relaxin, suggesting that the presence of the C peptide did not influence the conformation of the active site. H3 relaxin was also able to activate native LGR7 receptors. It stimulated increased MMP-2 expression in LGR7-expressing rat ventricular fibroblasts in a dose-dependent manner and, following infusion into the lateral ventricle of the brain, stimulated water drinking in rats, activating LGR7 receptors located in the subfornical organ. Thus, H3 relaxin is able to interact with the relaxin receptor LGR7 both in vitro and in vivo.  相似文献   

6.
7.
GPCR135, publicly known as somatostatin- and angiotensin-like peptide receptor, is expressed in the central nervous system and its cognate ligand(s) has not been identified. We have found that both rat and porcine brain extracts stimulated 35S-labeled guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) incorporation in cells over-expressing GPCR135. Multiple rounds of extraction, purification, followed by N-terminal sequence analysis of the ligand from porcine brain revealed that the ligand is a product of the recently identified gene, relaxin-3 (aka insulin-7 or INSL7). Recombinant human relaxin-3 potently stimulates GTPgammaS binding and inhibits cAMP accumulation in GPCR135 overexpressing cells with EC50 values of 0.25 and 0.35 nM, respectively. 125I-Relaxin-3 binds GPCR135 at high affinity with a Kd value of 0.31 nM. Relaxin-3 is the only member of the insulin/relaxin superfamily that can activate GPCR135. In situ hybridization showed that relaxin-3 mRNA is predominantly expressed in the dorsomedial ventral tegmental nucleus of the brainstem (aka nucleus incertus), as well as in discrete cells in the lateral periaqueductal gray and in the central gray nucleus. GPCR135 is expressed abundantly in the hypothalamus with discrete expression in the paraventricular nucleus of the hypothalamus and supraoptic nucleus, as well as in the cortex, septal nucleus, and preoptical area. Relaxin-3 has previously been shown to bind and activate the LGR7 relaxin receptor. However, we believe that neuroanatomical colocalization of GPCR135 and relaxin-3, coupled with a clear high affinity interaction, suggest that GPCR135 is the receptor for relaxin-3. The identification of relaxin-3 as the ligand for GPCR135 provides the framework for the discovery of a new brainstem/hypothalamus circuitry.  相似文献   

8.
Relaxin-3 is the most recently discovered member of the relaxin family of peptide hormones. In contrast to relaxin-1 and -2, whose main functions are associated with pregnancy, relaxin-3 is involved in neuropeptide signaling in the brain. Here, we report the solution structure of human relaxin-3, the first structure of a relaxin family member to be solved by NMR methods. Overall, relaxin-3 adopts an insulin-like fold, but the structure differs crucially from the crystal structure of human relaxin-2 near the B-chain terminus. In particular, the B-chain C terminus folds back, allowing Trp(B27) to interact with the hydrophobic core. This interaction partly blocks the conserved RXXXRXXI motif identified as a determinant for the interaction with the relaxin receptor LGR7 and may account for the lower affinity of relaxin-3 relative to relaxin for this receptor. This structural feature is likely important for the activation of its endogenous receptor, GPCR135.  相似文献   

9.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors. Here, we demonstrate that H3 relaxin activates LGR7 but not LGR8. Taking advantage of the overlapping specificity of these three ligands for the two related LGRs, chimeric receptors were generated to elucidate the mechanism of ligand activation of LGR7. Chimeric receptor LGR7/8 with the ectodomain from LGR7 but the transmembrane region from LGR8 maintains responsiveness to relaxin but was less responsive to H3 relaxin based on ligand stimulation of cAMP production. The decreased ligand signaling was accompanied by decreases in the ability of H3 relaxin to compete for (33)P-relaxin binding to the chimeric receptor. However, replacement of the exoloop 2, but not exoloop 1 or 3, of LGR7 to the chimeric LGR7/8 restored ligand binding and receptor-mediated cAMP production. These results suggested that activation of LGR7 by H3 relaxin involves specific binding of the ligand to both the ectodomain and the exoloop 2, thus providing a model with which to understand the molecular basis of ligand signaling for this unique subgroup of G protein-coupled receptors.  相似文献   

10.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the relaxin-insulin superfamily of peptides that plays important roles in testes descent, oocyte maturation and the control of male germ cell apoptosis. These actions are mediated via a specific G-protein coupled receptor, LGR8. Previous structure-activity studies have shown that the key binding site of INSL3 is situated within its B-chain. Recent studies in our laboratory have led to the identification of a cyclic peptide mimetic 2 of the INSL3 B-chain, which we have shown to compete with the binding of [33P]-relaxin to LGR8 expressed in HEK293T cells, and to inhibit cAMP-mediated signaling in these cells, i.e. it is an antagonist of INSL3. In order to further define the structure-activity relationships of cyclic analogues of the INSL3 B-chain, we used a structure-based approach to design a series of cyclic, disulfide-constrained INSL3 B-chain mimetics. To do this, we first created a model of the 3D structure of INSL3 using the crystal structure of human relaxin as a template. This model of INSL3 was then used as a template to design a series of disulfide-constrained mimetics of the INSL3 B-chain. The peptides were synthesized by solid-phase peptide synthesis using pseudoproline dipeptides to improve the synthesis outcome. Of the seven prepared INSL3 B-chain mimetics, three compounds were found to have partial displacement activity, while four were able to completely displace [33P]-relaxin from LGR8, including compounds that were markedly shorter than compound 2. The best of these, mimetic 6, showed significantly greater affinity for LGR8 than compound 2, but still displayed around 1000-fold less affinity for LGR8 than native INSL3. Analysis of selected mimetics for their alpha-helical content using circular dichroism (CD) spectroscopy revealed that, generally, the mimetics showed less than expected helicity. The inability of the compounds to display true native INSL3 structure is likely contributing to their reduced receptor binding affinity. We are currently examining alternative INSL3 B-chain mimetics that might better present key receptor binding residues in the native INSL3-like conformation.  相似文献   

11.
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.  相似文献   

12.
The peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains. To define the primary INSL3 binding site in LGR8, its LRRs were first modeled on the crystal structure of the Nogo receptor (NgR) and the most likely binding surface identified. Multiple sequence alignment of this surface revealed the presence of seven of the nine residues implicated in relaxin binding to LGR7. Replacement of these residues with alanine caused reduced [(125)I]INSL3 binding, and a specific peptide/receptor interaction point was revealed using competition binding assays with mutant INSL3 peptides. This point was used to crudely dock the solution structure of INSL3 onto the LRR model of LGR8, allowing the prediction of the INSL3 Trp-B27 binding site. This prediction was then validated using mutant INSL3 peptide competition binding assays on LGR8 mutants. Our results indicated that LGR8 Asp-227 was crucial for binding INSL3 Arg-B16, whereas LGR8 Phe-131 and Gln-133 were involved in INSL3 Trp-B27 binding. From these two defined interactions, we predicted the complete INSL3/LGR8 primary binding site, including interactions between INSL3 His-B12 and LGR8 Trp-177, INSL3 Val-B19 and LGR8 Ile-179, and INSL3 Arg-B20 with LGR8 Asp-181 and Glu-229.  相似文献   

13.
Human relaxin-3 is a neuropeptide that is structurally similar to human insulin with two chains (A and B) connected by three disulfide bonds. It is expressed primarily in the brain and has modulatory roles in stress and anxiety, feeding and metabolism, and arousal and behavioural activation. Structure-activity relationship studies have shown that relaxin-3 interacts with its cognate receptor RXFP3 primarily through its B-chain and that its A-chain does not have any functional role. In this study, we have investigated the effect of modification of the B-chain C-terminus on the binding and activity of the peptide. We have chemically synthesised and characterized H3 relaxin as C-termini acid (both A and B chains having free C-termini; native form) and amide forms (both chains’ C-termini were amidated). We have confirmed that the acid form of the peptide is more potent than its amide form at both RXFP3 and RXFP4 receptors. We further investigated the effects of amidation at the C-terminus of individual chains. We report here for the first time that amidation at the C-terminus of the B-chain of H3 relaxin leads to significant drop in the binding and activity of the peptide at RXFP3/RXFP4 receptors. However, modification of the A-chain C-terminus does not have any effect on the activity. We have confirmed using circular dichroism spectroscopy that there is no secondary structural change between the acid and amide form of the peptide, and it is likely that it is the local C-terminal carboxyl group orientation that is crucial for interacting with the receptors.  相似文献   

14.
Zhang WJ  Luo X  Liu YL  Shao XX  Wade JD  Bathgate RA  Guo ZY 《Amino acids》2012,43(2):983-992
Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various natural or designed ligands with these receptors. Using this site-specific labeling strategy, other functional probes, such as fluorescent dyes, biotin, or nanoparticles could also be introduced to the A-chain N-terminal of the recombinant human relaxin-3. Additionally, we improved the time-resolved fluorescence assay for the DOTA-bound europium ion which paves the way for the use of DOTA as a lanthanide chelator for protein and peptide labeling in future studies.  相似文献   

15.
Biotin-avidin immobilization has been routinely used as a tool to study peptide-receptor and peptide-antibody interactions. Biotinylated peptides can also be employed to localize cells that express the peptides' receptor, and to analyse ligand-receptor binding. Insulin-like peptide 3 (INSL3) is a peptide hormone which contains A- and B-chains connected by two disulphide bonds and plays a role in testicular descent during sexual development. In order to study the interaction of INSL3 with its receptor LGR8, a G protein-coupled receptor, we chemically synthesized Nalpha-mono-biotinylated human INSL3 (B-hINSL3) and compared it structurally and biologically with hINSL3. Both peptides exhibited similar, but high, receptor binding affinities on human foetal kidney fibroblast 293T cells transfected human LGR8 based on a competition radioreceptor assay with 33P-labelled relaxin H2 (B33). The modified B-hINSL3 showed full biological activity as determined by the stimulation of gubernacular cell proliferation. The labelled B-hINSL3 contains a higher alpha-helix content, and this increased helical structure is accompanied by an increase in ability to stimulate cAMP accumulation in 293T cells expressing LGR8. Our results suggest that the N-terminal region of the A-chain is not involved in the interaction of INSL3 with its receptor. However, the introduction of biotin onto the N-terminus of the A-chain promoted conformational stability which, in turn, permitted better receptor activation.  相似文献   

16.
The relaxin family peptide receptors have been implicated in numerous physiological processes including energy homeostasis, cardiac function, wound healing, and reproductive function. Two family members, RXFP3 and RXFP4, are class A GPCRs with endogenous peptide ligands (relaxin-3 and insulin-like peptide 5 (INSL5), respectively). Polymorphisms in relaxin-3 and RXFP3 have been associated with obesity, diabetes, and hypercholesterolemia. Moreover, central administration of relaxin-3 in rats has been shown to increase food intake, leading to body weight gain. Reported RXFP3 and RXFP4 ligands have been restricted to peptides (both endogenous and synthetic) as well as a low molecular weight positive allosteric modulator requiring a non-endogenous orthosteric ligand. Described here is the discovery of the first potent low molecular weight dual agonists of RXFP3/4. The scaffold identified is competitive with a chimeric relaxin-3/INSL5 peptide for RXFP3 binding, elicits similar downstream signaling as relaxin-3, and increases food intake in rats following acute central administration. This is the first report of small molecule RXFP3/4 agonism.  相似文献   

17.
Tanaka M 《The FEBS journal》2010,277(24):4990-4997
Relaxin-3, also known as insulin-like peptide-7, is a newly-identified peptide of the insulin superfamily. All members of this superfamily have a similar structure, which consists of two subunits (A-chain and B-chain) linked by disulfide bonds. Relaxin-3 is so named because it has a motif that can interact with the relaxin receptor. By contrast to other relaxins, relaxin-3 is mainly expressed in the brain and testis. In rodent brain, anatomical studies have revealed its predominant expression in neurons of the nucleus incertus of the dorsal pons, and a few other regions of the brainstem. On the other hand, relaxin-3-expressing nerve fibers and the relaxin-3 receptors, RXFP3 and RXFP1, are widely distributed in the forebrain, with the hypothalamus being one of the most densely-innervated regions. Therefore, relaxin-3 is considered to exert various actions through its ligand-receptor system. This minireview describes the expression of relaxin-3 in the brain, as well as its functions in the hypothalamus, including the stress response and food intake.  相似文献   

18.
19.
Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3) is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM), 3-[3,5-Bis(trifluoromethyl)phenyl]-1-(3,4-dichlorobenzyl)-1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea (135PAM1). Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2) and R3/I5(NH2) with pEC50 values of 6.54 (6.46 to 6.64) and 6.07 (5.94 to 6.20), respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27) in the presence of a probe (10 nM) concentration of relaxin-3(NH2). 135PAM1 does not compete for binding with the orthosteric radioligand, [(125)I] R3I5 (amide), in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native) form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe molecules that can affect allosteric modulation of RXFP3.  相似文献   

20.
Insulin-like peptide 5 (INSL5) is a two-chain, three-disulfide bonded member of insulin/relaxin superfamily of peptides that includes insulin, insulin-like growth factor I and II (IGFI and IGFII), insulin-like peptide 3, 4, 5 and 6 (INSL3, 4, 5 and 6), relaxin-1 (H1 relaxin), -2 (H2 relaxin) and -3 (H3 relaxin). Although it is expressed in relatively high levels in the gut, its biological function remains unclear. However, recent reports suggest a significant orexigenic action and a role in the regulation of insulin secretion and β-cell homeostasis, which implies that both agonists and antagonists of the peptide may have significant therapeutic applications. Modern solid phase synthesis techniques together with regioselective disulfide bond formation were employed for a preliminary structure–function relationship study of mouse INSL5. Two point mutated analogues, mouse INSL5 A-B(R24A, W25A) and mouse INSL5 A-B(K6A, R14A, Y18A) were chemically prepared, where the residues in the B-chain that may be involved in receptor activation and affinity binding, were respectively mutated. Synthetic mouse INSL5 A-B(R24A, W25A) analogue was inactive on RXFP4, the native receptor for INSL5, suggesting ArgB24 and TrpB25 are probably directly involved in INSL5 receptor activation. Mouse INSL5 A-B(K6A, R14A, Y18A) analogue had both decreased affinity and potency on RXFP4 (pIC50 7.7 ± 0.2, pEC50 7.87 ± 0.18) which indicated that one or more of these residues are critical for the binding to the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号