首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Relaxin-1 is a heterodimeric peptide hormone primarily produced by the pregnant corpus luteum and/or placenta and is involved in many essential physiological processes centered on its action as a potent extracellular matrix (ECM) remodeling agent. Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is predominantly expressed in the Leydig cells of the testes and is an important mediator of testicular descent. The relaxin-1 equivalent peptide in humans is actually the product of the human RLN2 gene, human 2 (H2) relaxin. Recently identified and thought to be the ancestral relaxin, relaxin-3 is specifically expressed in the nucleus incertus of the mouse and rat brain and is most likely an important neuropeptide. Each of the hormones above act on cell membrane G-protein coupled receptors (GPCRs). The relaxin-1 receptor is leucine-rich repeat-containing GPCR 7 (LGR7) whereas INSL3 acts on the closely related LGR8. These receptors have large extra-cellular domains containing multiple leucine-rich repeats (LRRs) and a unique LDL receptor-like cysteine-rich motif (LDLR-domain). Relaxin-3 will bind and activate LGR7 with 50-fold lower activity than H2 relaxin. Two relaxin-3 selective GPCRs; somatostatin and angiotensin like peptide receptor (SALPR) and GPCR 142 were recently identified, these type I GPCRs are unrelated to LGR7 and LGR8. The discovery and characterisation of these receptors is greatly aiding the quest to unravel the mechanics of these important hormones, however with three other family members, insulin-like peptides 4–6 (INSL4, INSL5 and INSL6) with unknown functions and unidentified receptors, there is still much to be learnt about this hormone family.  相似文献   

2.
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein-coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.  相似文献   

3.
The relaxin peptides are a family of hormones that share a structural fold characterized by two chains, A and B, that are cross-braced by three disulfide bonds. Relaxins signal through two different classes of G-protein-coupled receptors (GPCRs), leucine-rich repeat-containing GPCRs LGR7 and LGR8 together with GPCR135 and GPCR142, now referred to as the relaxin family peptide (RXFP) receptors 1-4, respectively. Although key binding residues have been identified in the B-chain of the relaxin peptides, the role of the A-chain in their activity is currently unknown. A recent study showed that INSL3 can be truncated at the N terminus of its A-chain by up to 9 residues without affecting the binding affinity to its receptor RXFP2 while becoming a high affinity antagonist. This suggests that the N terminus of the INSL3 A-chain contains residues essential for RXFP2 activation. In this study, we have synthesized A-chain truncated human relaxin-2 and -3 (H2 and H3) relaxin peptides, characterized their structure by both CD and NMR spectroscopy, and tested their binding and cAMP activities on RXFP1, RXFP2, and RXFP3. In stark contrast to INSL3, A-chain-truncated H2 relaxin peptides lost RXFP1 and RXFP2 binding affinity and concurrently cAMP-stimulatory activity. H3 relaxin A-chain-truncated peptides displayed similar properties on RXFP1, highlighting a similar binding mechanism for H2 and H3 relaxin. In contrast, A-chain-truncated H3 relaxin peptides showed identical activity on RXFP3, highlighting that the B-chain is the sole determinant of the H3 relaxin-RXFP3 interaction. Our results provide new insights into the action of relaxins and demonstrate that the role of the A-chain for relaxin activity is both peptide- and receptor-dependent.  相似文献   

4.
Relaxin peptides are important hormones for the regulation of reproductive tissue remodeling and the renal cardiovascular system during pregnancy. Recent studies demonstrated that two of the seven human relaxin family peptides, relaxin H2 (RLN2) and INSL3, signal exclusively through leucine-rich repeat-containing G protein-coupled receptors, LGR7 and LGR8. Although it was well characterized that an RXXXRXXI motif at the RLN2 B chain confers receptor activation activity, it is not clear what roles RLN2 A chain plays in receptor interaction. Analyses of relaxin family genes on syntenic regions of model tetrapods showed that the A chain of RLN2 orthologs exhibited a greater sequence divergence as compared with the receptor-binding domain-containing B chain, foreshadowing a potential role in receptor interactions; hence, defining receptor selectivity in this fast evolving peptide hormone. To test our hypothesis that select residues in the human RLN2 A chain play key roles in receptor interaction, we studied mutant peptides with residue substitution(s) in the A chain. Here, we showed that alanine substitution at the A16 and A17 positions enhances LGR8-activation activity of RLN2, whereas mutation at the A22-23 region (RLN2A22-23) ablates LGR8, but not LGR7, activation activity. In addition, we demonstrated that the functional characteristics of the RLN2A22-23 mutant are mainly attributed to modifications at the PheA23 position. Taken together, our studies indicated that ThrA16, LysA17, and PheA23 constitute part of the receptor-binding interface of human RLN2, and that modification of these residues has led to the generation of novel human RLN2 analogs that would allow selective activation of human LGR7, but not LGR8, in vivo.  相似文献   

5.
Insulin-like peptide 5 (INSL5) is a peptide that belongs to the relaxin/insulin family, and its receptor has not been identified. In this report, we demonstrate that INSL5 is a specific agonist for GPCR142. Human INSL5 displaces the binding of (125)I-relaxin-3 to GPCR142 with a high affinity (K(i) = 1.5 nM). In a saturation binding assay, (125)I-INSL5 binds GPCR142 with a K(d) value of 2.5 nM. In functional guanosine (gamma-thio)-triphosphate binding and cAMP accumulation assays, INSL5 potently activates GPCR142 with EC(50) values of 1.3 and 1.2 nM, respectively. In addition, INSL5 stimulates Ca(2+) mobilization in HEK293 cells expressing GPCR142 and G alpha(16). Overall, INSL5 behaves as an agonist for GPCR142 similar to relaxin-3. However, unlike relaxin-3, which is also a potent agonist for GPCR135 and LGR7, INSL5 does not activate either GPCR135 or LGR7. INSL5 inhibits (125)I-relaxin-3 binding to GPCR135 with a low potency (K(i) = 500 nM). A functional assay shows that INSL5 (1 microm) is a weak antagonist for GPCR135. In addition, INSL5 (up to 1 microm) shows no affinity or activity at LGR7 or LGR8 either in a binding assay or a bio-functional assay. Previously, we have demonstrated that GPCR142 mRNA is expressed in peripheral tissues, particularly in the colon. Here we show that INSL5 mRNA is expressed in many peripheral tissues, similar to GPCR142. The high affinity interaction between INSL5 and GPCR142 coupled with their co-evolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for GPCR142.  相似文献   

6.
Leucine-rich repeat-containing, G protein-coupled receptors (LGRs) represent a unique subgroup of G protein-coupled receptors with a large ectodomain. Recent studies demonstrated that relaxin activates two orphan LGRs, LGR7 and LGR8, whereas INSL3/Leydig insulin-like peptide specifically activates LGR8. Human relaxin 3 (H3 relaxin) was recently discovered as a novel ligand for relaxin receptors. Here, we demonstrate that H3 relaxin activates LGR7 but not LGR8. Taking advantage of the overlapping specificity of these three ligands for the two related LGRs, chimeric receptors were generated to elucidate the mechanism of ligand activation of LGR7. Chimeric receptor LGR7/8 with the ectodomain from LGR7 but the transmembrane region from LGR8 maintains responsiveness to relaxin but was less responsive to H3 relaxin based on ligand stimulation of cAMP production. The decreased ligand signaling was accompanied by decreases in the ability of H3 relaxin to compete for (33)P-relaxin binding to the chimeric receptor. However, replacement of the exoloop 2, but not exoloop 1 or 3, of LGR7 to the chimeric LGR7/8 restored ligand binding and receptor-mediated cAMP production. These results suggested that activation of LGR7 by H3 relaxin involves specific binding of the ligand to both the ectodomain and the exoloop 2, thus providing a model with which to understand the molecular basis of ligand signaling for this unique subgroup of G protein-coupled receptors.  相似文献   

7.
8.
The receptors for the peptide hormones relaxin and insulin-like peptide 3 (INSL3) are the leucine-rich repeat-containing G-protein-coupled receptors LGR7 and LGR8 recently renamed as the relaxin family peptide (RXFP) receptors, RXFP1 and RXFP2, respectively. These receptors differ from other LGRs by the addition of an N-terminal low density lipoprotein receptor class A (LDLa) module and are the only human G-protein-coupled receptors to contain such a domain. Recently it was shown that the LDLa module of the RXFP1 and RXFP2 receptors is essential for ligand-stimulated cAMP signaling. The mechanism by which the LDLa module modulates receptor signaling is unknown; however, it represents a unique paradigm in understanding G-protein-coupled receptor signaling. Here we present the structure of the RXFP1 receptor LDLa module determined by solution NMR spectroscopy. The structure is similar to other LDLa modules but shows small differences in side chain orientations and inter-residue packing. Interchange of the module with the second ligand binding domain of the LDL receptor, LB2, results in a receptor that binds relaxin with full affinity but is unable to signal. Furthermore, we demonstrate via structural studies on mutated LDLa modules and functional studies on mutated full-length receptors that a hydrophobic surface within the N-terminal region of the module is essential for activation of RXFP1 receptor signal in response to relaxin stimulation. This study has highlighted the necessity to understand the structural effects of single amino acid mutations on the LDLa module to fully interpret the effects of these mutations on receptor activity.  相似文献   

9.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the relaxin-insulin superfamily of peptides that plays important roles in testes descent, oocyte maturation and the control of male germ cell apoptosis. These actions are mediated via a specific G-protein coupled receptor, LGR8. Previous structure-activity studies have shown that the key binding site of INSL3 is situated within its B-chain. Recent studies in our laboratory have led to the identification of a cyclic peptide mimetic 2 of the INSL3 B-chain, which we have shown to compete with the binding of [33P]-relaxin to LGR8 expressed in HEK293T cells, and to inhibit cAMP-mediated signaling in these cells, i.e. it is an antagonist of INSL3. In order to further define the structure-activity relationships of cyclic analogues of the INSL3 B-chain, we used a structure-based approach to design a series of cyclic, disulfide-constrained INSL3 B-chain mimetics. To do this, we first created a model of the 3D structure of INSL3 using the crystal structure of human relaxin as a template. This model of INSL3 was then used as a template to design a series of disulfide-constrained mimetics of the INSL3 B-chain. The peptides were synthesized by solid-phase peptide synthesis using pseudoproline dipeptides to improve the synthesis outcome. Of the seven prepared INSL3 B-chain mimetics, three compounds were found to have partial displacement activity, while four were able to completely displace [33P]-relaxin from LGR8, including compounds that were markedly shorter than compound 2. The best of these, mimetic 6, showed significantly greater affinity for LGR8 than compound 2, but still displayed around 1000-fold less affinity for LGR8 than native INSL3. Analysis of selected mimetics for their alpha-helical content using circular dichroism (CD) spectroscopy revealed that, generally, the mimetics showed less than expected helicity. The inability of the compounds to display true native INSL3 structure is likely contributing to their reduced receptor binding affinity. We are currently examining alternative INSL3 B-chain mimetics that might better present key receptor binding residues in the native INSL3-like conformation.  相似文献   

10.
Biotin-avidin immobilization has been routinely used as a tool to study peptide-receptor and peptide-antibody interactions. Biotinylated peptides can also be employed to localize cells that express the peptides' receptor, and to analyse ligand-receptor binding. Insulin-like peptide 3 (INSL3) is a peptide hormone which contains A- and B-chains connected by two disulphide bonds and plays a role in testicular descent during sexual development. In order to study the interaction of INSL3 with its receptor LGR8, a G protein-coupled receptor, we chemically synthesized Nalpha-mono-biotinylated human INSL3 (B-hINSL3) and compared it structurally and biologically with hINSL3. Both peptides exhibited similar, but high, receptor binding affinities on human foetal kidney fibroblast 293T cells transfected human LGR8 based on a competition radioreceptor assay with 33P-labelled relaxin H2 (B33). The modified B-hINSL3 showed full biological activity as determined by the stimulation of gubernacular cell proliferation. The labelled B-hINSL3 contains a higher alpha-helix content, and this increased helical structure is accompanied by an increase in ability to stimulate cAMP accumulation in 293T cells expressing LGR8. Our results suggest that the N-terminal region of the A-chain is not involved in the interaction of INSL3 with its receptor. However, the introduction of biotin onto the N-terminus of the A-chain promoted conformational stability which, in turn, permitted better receptor activation.  相似文献   

11.
Relaxin-3 is a member of the human relaxin peptide family, the gene for which, RLN3, is predominantly expressed in the brain. Mapping studies in the rodent indicate a highly developed network of RLN3, RLN1, and relaxin receptor-expressing cells in the brain, suggesting that relaxin peptides have important functional roles in the central nervous system. A regioselective disulfide-bond synthesis protocol was developed and used for the chemical synthesis of human (H3) relaxin-3. The selectively S-protected A and B chains were combined by stepwise formation of each of the three insulin-like disulfides via aeration, thioloysis, and iodolysis. Judicious positioning of the three sets of S-protecting groups was crucial for acquisition of synthetic H3 relaxin in a good overall yield. The activity of the peptide was tested against relaxin family peptide receptors. Although the highest activity was demonstrated on the human relaxin-3 receptor (GPCR135), the peptide also showed high activity on relaxin receptors (LGR7) from various species and variable activity on the INSL3 receptor (LGR8). Recombinant mouse prorelaxin-3 demonstrated similar activity to H3 relaxin, suggesting that the presence of the C peptide did not influence the conformation of the active site. H3 relaxin was also able to activate native LGR7 receptors. It stimulated increased MMP-2 expression in LGR7-expressing rat ventricular fibroblasts in a dose-dependent manner and, following infusion into the lateral ventricle of the brain, stimulated water drinking in rats, activating LGR7 receptors located in the subfornical organ. Thus, H3 relaxin is able to interact with the relaxin receptor LGR7 both in vitro and in vivo.  相似文献   

12.
The human relaxin family comprises seven peptide hormones with various biological functions mediated through interactions with G-protein-coupled receptors. Interestingly, among the hitherto characterized receptors there is no absolute selectivity toward their primary ligand. The most striking example of this is the relaxin family ancestor, relaxin-3, which is an agonist for three of the four currently known relaxin receptors: GPCR135, GPCR142, and LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed predominantly in the brain and have been linked to regulation of stress and feeding. However, to fully understand the role of relaxin-3 in neurological signaling, the development of selective GPCR135 agonists and antagonists for in vivo studies is crucial. Recent reports have demonstrated that such selective ligands can be achieved by making chimeric peptides comprising the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural insights into the consequences of combining A- and B-chains from different relaxins we have determined the NMR solution structure of a human relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain adopts a conformation similar to the relaxin-3 A-chain, and thus has the ability to structurally support a native-like conformation of the relaxin-3 B-chain. These findings suggest that the decrease in activity at the LGR7 receptor seen for this peptide is a result of the removal of a secondary LGR7 binding site present in the relaxin-3 A-chain, rather than conformational changes in the primary B-chain receptor binding site.  相似文献   

13.
The relaxin and insulin-like peptide 3 receptors, LGR7 and LGR8, respectively, are unique members of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family, because they possess an N-terminal motif with homology to the low density lipoprotein class A (LDLa) modules. By characterizing several LGR7 and LGR8 splice variants, we have revealed that the LDLa module directs ligand-activated cAMP signaling. The LGR8-short variant encodes an LGR8 receptor lacking the LDLa module, whereas LGR7-truncate, LGR7-truncate-2, and LGR7-truncate-3 all encode truncated secreted proteins retaining the LGR7 LDLa module. LGR8-short and an engineered LGR7 variant missing its LDLa module, LGR7-short, bound to their respective ligands with high affinity but lost their ability to signal via stimulation of intracellular cAMP accumulation. Conversely, secreted LGR7-truncate protein with the LDLa module was able to block relaxin-induced LGR7 cAMP signaling and did so without compromising the ability of LGR7 to bind to relaxin or be expressed on the cell membrane. Although the LDLa module of LGR7 was N-glycosylated at position Asn-14, an LGR7 N14Q mutant retained relaxin binding affinity and cAMP signaling, implying that glycosylation is not essential for optimal LDLa function. Using real-time PCR, the expression of mouse LGR7-truncate was detected to be high in, and specific to, the uterus of pregnant mice. The differential expression and evolutionary conservation of LGR7-truncate further suggests that it may also play an important role in vivo. This study highlights the essential role of the LDLa module in LGR7 and LGR8 function and introduces a novel model of GPCR regulation.  相似文献   

14.
GREAT/LGR8 is the only receptor for insulin-like 3 peptide   总被引:11,自引:0,他引:11  
During male development testes descend from their embryonic intraabdominal position into the scrotum. Two genes, encoding the insulin-like 3 peptide (INSL3) and the GREAT/LGR8 G protein-coupled receptor, control the differentiation of gubernaculum, the caudal genitoinguinal ligament critical for testicular descent. It was established that the INSL3 peptide activates GREAT/LGR8 receptor in vitro. Mutations of Insl3 or Great cause cryptorchidism (undescended testes) in mice. Overexpression of the transgenic Insl3 causes male-like gubernaculum differentiation, ovarian descent into lower abdominal position, and reduced fertility in females. To address the question whether Great deletion complements the mutant female phenotype caused by the Insl3 overexpression, we have produced Insl3 transgenic mice deficient for Great. Such females had a wild-type phenotype, demonstrating that Great was the only cognate receptor for Insl3 in vivo. We have established that pancreatic HIT cells, transfected with the INSL3 cDNA, produce functionally active peptide. Analysis of five INSL3 mutant variants detected in cryptorchid patients showed that P49S substitution renders functionally compromised peptide. Therefore, mutations in INSL3 might contribute to the etiology of cryptorchidism. We have also showed that synthetic insulin-like peptides (INSL4 and INSL6) were unable to activate LGR7 or GREAT/LGR8.  相似文献   

15.
H2 relaxin (relaxin) is a member of the insulin–relaxin superfamily and exhibits several non-reproductive functions in addition to its well-known properties as a pregnancy hormone. Over the years, the therapeutic potential of relaxin has been examined for a number of conditions. It is currently in phase III clinical trials for the treatment of acute heart failure. The 53 amino acid peptide hormone consists of two polypeptide chains (A and B) which are cross-linked by two inter-chains and one intra-A chain disulfide bridge. Although its cognate receptor is relaxin family peptide receptor (RXFP) 1, relaxin is also able to cross-react with RXFP2, for which the native ligand is INSL3. The “RXXXRXXI” motif in the B-chain of H2 relaxin is responsible for primary binding to LRR of the RXFP1 receptor (Büllesbach and Schwabe, J Biol Chem 280:14051–14056, 2005). Previous RXFP2 receptor mutation and molecular modelling studies strongly suggest that, in addition to this motif, the Trp-B28 residue in the B-chain is responsible for H2–RXFP2 interaction. To confirm this finding, here we have mutated H2 relaxin in which Trp-B28 was replaced with alanine. The synthetic relaxin analogue was then tested on cells expressing either RXFP1 or 2 to determine the affinity and potency for the respective receptors. Our results confirm that Trp-B28 in the B-chain is crucial for binding and activating RXFP2, but not for RXFP1.  相似文献   

16.
Insulin-like 3 (INSL3) hormone plays a crucial role in testicular descent during embryonic development. Genetic ablation of Insl3 or its G protein-coupled receptor (GPCR) Lgr8 causes cryptorchidism in mice. Previously, we identified a nonfunctional T222P mutation of LGR8 in several human patients with testicular maldescent. Using a large population of patients and healthy controls from Italy, we have demonstrated that T222P LGR8 mutation is present only in affected patients (19 T222P/+ of 598 vs. 0/450, P < 0.0001). We have also identified a novel allele of LGR8 (R223K) found in one patient with retractile testes. Both mutations are located in the leucine-rich repeats (LRRs) of GPCR ectodomain. The expression analysis of T222P mutant receptor transfected into 293T cells revealed that the mutation severely compromised GPCR cell membrane expression. The substitution of Thr(222) with the neutral Ser or Ala, or the R223K mutation, did not alter receptor cell membrane expression or ligand-induced cAMP increase. Additional mutations, affecting first leucine in a signature LxxLxLxxN/CxL stretch of LRR (L283F), or the amino acid residues, forming the disulfide bond or coordinating calcium ion in the LDLa module (C71Y and D70Y), also rendered proteins with reduced cell surface expression. The structural alterations of both LRRs and LDLa of the ligand-binding part of LGR8 cause the inability of receptor to express on the cell surface membrane and might be responsible for the abnormal testicular phenotype in patients.  相似文献   

17.
The relaxin-like factor (RLF, also named INSL3) is a critical component in the chain of events that lead to the normal positioning of the gonads in the male fetus. RLF and relaxin share features of the secondary structure to the extent that relaxin cross-reacts with the LGR8, the RLF receptor. Although both hormones interact with their receptors essentially via the B chain, the sharply defined binding cassette of relaxin is not present in RLF. Structure and function analysis of RLF derivatives with single amino acid replacements revealed that the most important binding residues are tryptophan B27, followed by arginine B16 and valine B19. Single alanine replacements for each individual position resulted in a relative receptor affinity of 4.0% (B16), 6.1% (B19), and 0.5% (B27). Tryptophan B27 is located on an extended structure, and arginine B16 and valine B19 are positioned on the exposed surface of the B chain helix. The 3 residues could be brought together to form a contiguous binding area if the C-terminal end of the B chain were free to fold back against the central portion of the B chain helix. Such a movement depends critically on the flexibility of the C-terminal end, which is controlled by positions B23-25. In as much as these major binding residues seem hardly sufficient to explain the strong binding of RLF to LGR8 we searched for and found an extended region where little contributions by individual residues added up to a strong receptor affinity. This mode of interaction could drive the binding energy sufficiently high to account for the picomolar binding constant of RLF and its receptor.  相似文献   

18.
BACKGROUND/AIMS: Although insulin-like factor 3 (INSL3) and its receptor leucine-rich repeat-containing G protein-coupled receptor 8/G protein-coupled receptor affecting testis descent (LGR8/GREAT) are essential for the gubernacular development, mutations of INSL3 and LGR8/GREAT are infrequent in patients with cryptorchidism (CO), and there is no report documenting a positive association of CO with a polymorphism in INSL3 or LGR8/GREAT. Here, we further examined the relevance of INSL3 and LGR8/GREAT mutations and polymorphisms to the development of CO. METHODS: Sixty-two Japanese CO patients and 60 fertile males were studied. INSL3 was analyzed by direct sequencing and restriction enzyme digestion, and LGR8/GREAT was examined by denaturing high-performance liquid chromatography followed by direct sequencing for exons with abnormal chromatogram patterns. RESULTS: No definitive mutation was identified in both genes. Six polymorphisms were detected in INSL3 or LGR8/GREAT and Thr/Thr genotype of Ala60Thr polymorphism in INSL3 was strongly associated with CO (p=0.0024, odds ratio=5.3, 95% confidence interval=1.7-17). CONCLUSION: The results, in conjunction with the previous data, suggest that mutations of INSL3 and LGR8/GREAT remain rare, and that the Thr/Thr genotype of Ala60Thr polymorphism in INSL3 may constitute a susceptibility factor for the development of CO.  相似文献   

19.
Insulin-like peptide 3 (INSL3) is a member of the insulin superfamily that plays an important role in mediating testes descent during fetal development. More recently, it has also been demonstrated to initiate oocyte maturation and suppress male germ cell apoptosis. These actions are mediated via a specific G-protein-coupled receptor, LGR8. Little is known regarding the structure and function relationship of INSL3, although it is believed that the principal receptor binding site resides within its B-chain. We subsequently observed that the linear B-chain alone (INSL3B-(1-31)) bound to LGR8 and was able to antagonise INSL3 stimulated cAMP accumulation in HEK-293T cells expressing LGR8. Sequentially N- and C-terminally shortened linear analogs were prepared by solid phase synthesis and subsequent assay showed that the minimum length required for binding was residues 11-27. It was also observed that increased binding affinity correlated with a corresponding increase in alpha-helical content as measured by circular dichroism spectroscopy. Molecular modeling studies suggested that judicious placement of a conformational constraint within this peptide would increase its alpha-helix content and result in increased structural similarity to the B-chain within native INSL3. Consequently, intramolecularly disulfide-linked analogs of the B-chain showed a potentiation of INSL3 antagonistic activity, as well as exhibiting increased proteolytic stability, as assessed in rat serum in vitro. Administration of one of these peptides into the testes of rats resulted in a substantial decrease in testis weight probably due to the inhibition of germ cell survival, suggesting that INSL3 antagonists may have potential as novel contraceptive agents.  相似文献   

20.
Summary Insulin-like peptide 3 (INSL3) is one of ten members of the human insulin superfamily and consists of two peptide chains that contain the characteristic insulin fold and disulfide bond pairings. It is primarily produced in the Leydig cells of the testes, and gene knockout experiments have identified a key biological role as initiating testes descent during foetal development. Its receptor has recently been shown to be a member of the leucine-rich repeat-containing G-protein-coupled receptor family (LGR) and is known as LGR8. Considerable work has recently been undertaken with the aim of studying the mechanism of INSL3 downstream action on responsive cells and, towards this goal, the use of synthetic peptides has proved particularly beneficial. This mini-review outlines how these together with basic structure-function studies are beginning to reveal not only its molecular actions but also its potential new biological actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号