首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
To induce multiple shoots from pumpkin (Cucurbita moschata Duch.), cotyledon explants excised from various ages of seedlings after in vitro germination were cultured on MS augmented with different concentrations of BA (0, 0.5, 1.0 or 2.0 mg l−1). The highest frequency of shoot regeneration (63.7%) was observed from seven-day-old cotyledon explants cultured on MS containing 0.5 mg l−1 BA. The frequency and duration of shoot formation showed close correlation with the donor seedling age. By contrast, BA supply was necessary to promote shoot formation but no differences were observed in relation to different concentrations. Multiple shoots elongated on MS supplemented with 0.1 mg l−1 BA and 5–7 shoots per regenerated explant were recovered. Elongated shoots were rooted on MS, which was easier than that on 2/3MS, 1/2MS, or MS supplemented with 0.1 mg l−1 NAA. The rooted shoots were then transferred to greenhouse where they grew and flowered normally. Quantitative analysis of endogenous auxin (IAA) and cytokinins (iPA and ZR) in initial cotyledon explants of different aged seedlings showed that the regeneration ability of cotyledon explants varied dependently on their endogenous iPA contents. This study therefore deduces that the various organogenic capabilities of cotyledon explants from pumpkin are the result of their endogenous hormonal contents.  相似文献   

2.
Five different genotypes from in vitro as well as greenhouse grown melon plants were shown to be highly responsive for in vitro shoot formation from leaf explants when placed on basic MS medium supplemented with 1 mg/l 6-benzylaminopurine. In addition, a very suitable regeneration system was obtained when cotyledon pieces of mature seeds were incubated on the same culture medium. In this case, the first shoots already appeared after 10 days of incubation, and hundreds of shoots were formed on the cut surface 3 to 4 weeks later. Explants from mature cotyledons derived from seedlings did not lead to any shoot formation.Abbreviations MS Murashige and Skoog - IAA 3-indoleacetic acid - BA 6-benzylaminopurine  相似文献   

3.
Han JS  Oh DG  Mok IG  Park HG  Kim CK 《Plant cell reports》2004,23(5):291-296
Using cotyledon explants excised from seedlings germinated in vitro, an efficient plant regeneration system via organogenesis was established for bottle gourd (Lagenaria siceraria Standl.). Maximum shoot regeneration was obtained when the proximal parts of cotyledons from 4-day-old seedlings were cultured on MS medium with 3 mg/l BA and 0.5 mg/l AgNO3 under a 16-h photoperiod. After 3–4 weeks of culture, 21.9–80.7% of explants from the five cultivars regenerated shoots. Adventitious shoots were successfully rooted on a half-strength MS medium with 0.1 mg/l IAA for 2–3 weeks. Flow cytometric analysis revealed that most of the regenerated plants derived from culture on medium with AgNO3 were diploid.  相似文献   

4.
A protocol was developed for Agrobacterium-mediated genetic transformation of niger [ Guizotia abyssinica (L.f.) Cass.] using hypocotyl and cotyledon explants. Hypocotyls and cotyledons obtained from 7-day-old seedlings were co-cultivated with Agrobacterium tumefaciens strain EHA101/pIG121Hm that harbored genes for beta-glucuronidase (GUS), kanamycin, and hygromycin resistance. Following co-cultivation, the hypocotyl and cotyledon explants were cultivated on MS medium containing 1 mg/l 6-benzylaminopurine (BA) for 3 days in darkness. Subsequently, hypocotyl and cotyledon explants were transferred to selective MS medium containing 1 mg/l BA, 10 mg/l hygromycin, 10 mg/l kanamycin, and 500 mg/l cefotaxime. After 6 weeks, hypocotyls and cotyledons produced multiple adventitious shoot buds, and these explants were subcultured to MS medium containing 1 mg/l BA, 30 mg/l hygromycin, and 30 mg/l kanamycin. After a further 3 weeks, the explants (along with developing shoot buds) were subcultured to MS medium containing 1 mg/l BA, 50 mg/l kanamycin, and 50 mg/l hygromycin for further selection. Transgenic plants were obtained after rooting on half-strength MS medium supplemented with 0.1 mg/l alpha-naphthaleneacetic acid, 50 mg/l kanamycin, and 50 mg/l hygromycin and were confirmed by GUS histochemical assay and polymerase chain reaction analysis. Genomic Southern blot hybridization confirmed the incorporation of the neomycin phosphotransferase II gene into the host genome.  相似文献   

5.
Callus induction and in vitro plantlet regeneration systems for safflower (Carthamus tinctorius L.) cv. Bhima using root, hypocotyl, cotyledon and leaf explants were optimized by studying the influence on organogenesis of seedling age, media factors, growth regulators and excision orientation. Supplementation of the medium with an auxin: cytokinin ratio < 1 enhanced the growth rate of callus cultures; however, for 2,4-D the ratio was > 1.34–11.41 μM concentrations of growth regulators (IAA, NAA, BA and Kinetin) in the medium were found effective for callus induction and regeneration in all explants. The calli could be maintained over 32 months. BA (4.43 μM) combined with casein hydrolysate (10 mg l-1) yielded the highest rate of shoot production on hypocotyl (3–6) and cotyledon (5–7) explants and cotyledonary derived callus (4–8). More shoots were produced on explants cut from the most basal region of cotyledons from 5 to 7-day-old seedlings than from older seedlings or more distal cut sites. Apolar placement of explants, inhibited shoot regeneration. The shoot regeneration potential remained upto 7 months in calli developed on NAA + BA. Of three media tested, MS was superior to SH-M and B5. Rooting of shoots was not efficient; 42% of the shoots were rooted on MS medium containing sucrose (7–8%) + IAA (2.8–5.7 μM). Capitula induction was observed in both callus mediated shoots on cotyledons and shoots on rooting medium with sucrose, IAA, NAA and IBA. Well developed plantlets were transferred to the field with a 34% success rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Abstract

Callus production, shoot formation via organogenesis and rooting of the regenerated shoots are reported in an Egyptian variety of Pisum sativum L. Calli were initiated from hypocotyl, leaf, root and mature embryo explants when cultured on MS medium containing B5 vitamins and supplemented with 2 mg/l 2,4-D+1 mg/l kin. Among the different types of explants, hypocotyl showed best potential for callus proliferation. Hypocotyl, leaf and immature cotyledon explants were used for shoot organogenesis. The best results of shoot formation were achieved when hypocotyl explants were cultured on MS-medium supplemented with 2 mg/l BA+1 mg/l NAA. However, immature cotyledon explants showed the highest frequency of shoot formation with 1 mg/l BA. Data of in vitro rooting showed that maximum root frequency occurred on culture medium containing half strength of MS salts, 40 g/l sucrose and 2 mg/l NAA.  相似文献   

7.
 Cotyledon explants of tomato (Lycopersicon esculentum Mill. cvs 'Santa Clara', 'Firme' mutant, 'IPA-5' and 'IPA-6') were excised from 8- to 10-day-old in vitro-grown seedlings. Four different shoot induction media supplemented with timentin (300 mg l–1) were screened. When cotyledon explants were cultured on MS-based medium with 1.0 mg l–1 zeatin plus 0.1 mg l–1 IAA and supplemented with timentin, higher regeneration frequencies and a greater number of elongated shoots were obtained. It was observed that timentin caused an increase in the morphogenesis of in vitro cotyledon explants of tomato cultivars. In two of three cultivars tested, rooting of shoots was positively influenced, both in the presence and absence of timentin in the rooting medium, among shoots regenerated from explants derived from timentin-supplemented medium. The results confirm those of a previous investigation on the beneficial effects of this class of antibiotics on tomato regeneration and, consequently, its reliability for use in the transformation of this species. Received: 1 December 1998 / Revision received: 19 May 1999 · Accepted: 3 May 1999  相似文献   

8.
Epilobium angustifolium L. (fireweed) is a medicinal plant that has been used to treat diarrhea, mucous colitis, irritable-bowel syndrome, skin problems, prostate problems, menstrual disorders, asthma, whooping cough, and hiccups. A highly efficient and rapid regeneration system via multiple shoot formation was developed for fireweed. Explants (leaf, petiole, root, and stem segments) excised from sterile seedlings were cultured on medium supplemented with different concentrations and combinations of various plant growth regulators. Explant browning, a major problem for regeneration, was overcome by adding 100 mg/l ascorbic acid to all prepared media containing growth regulator combinations. Root explants formed more shoots than other explants. Best shoot proliferation was obtained from root explants cultured on media with 0.1 mg/l BA and 0.5 mg/l IAA. Regenerated shoots were transferred to rooting media containing different concentrations of IAA, IBA, NAA or 2,4-D. Most shoots developed roots on medium with 0.5 mg/l IAA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 3 weeks they were planted in to plastic pots containing potting soil and maintained in the plant growth room.  相似文献   

9.
A rapid, prolific and reproducible protocol for in vitro shoot regeneration from mature cotyledons of Platanus acerifolia has been developed. The influences of different plant growth regulator (PGR) combinations and donor seedling ages on shoot regeneration were investigated. The results showed that the application of BA in conjunction with NAA was the most effective PGR combination for the induction of shoot regeneration. When cotyledon explants of 5-day-old seedlings were incubated on MS basal medium supplemented with 4.0 mg L?1 BA and 0.2 mg L?1 NAA, 67.6?±?4.9% of the cotyledon segments produced adventitious shoots. These regenerated shoots were initially formed as stunted rosette cluster forms and were encouraged to elongate to produce distinct shoots by transfer onto MS medium containing 0.5 mg L?1 BA and 0.05 mg L?1 NAA; the resulting mean number of adventitious shoots per explant was 5.81?±?0.36. The elongated shoots were readily induced to root (i.e. 89.3% of shoots) by incubation on ½-strength MS medium supplemented with 0.1 mg L?1 IBA. This is the first report of an efficient in vitro shoot regeneration protocol for P. acerifolia through direct organogenesis using cotyledon explants. Hence, this provides a more efficient basis for the Agrobacterium-mediated genetic transformation of Platanus than previously available.  相似文献   

10.
The effects of a two-stage pretreatment of seedlings on the subsequent shoot regeneration capacity were investigated. Pretreated seedlings were obtained by germinating seeds on three different germination media and then further culturing on six different growth media. Lamina and petiole explants of two sugar beet (Beta vulgaris L.) breeding lines were then excised from the pretreated seedlings and cultured on five different shoot regeneration media. In both breeding lines, petiole explants produced significantly more shoots than lamina explants with higher frequencies of organogenic capacities; petiole explants of the lines M1195 and ELK345 produced a mean of 2.1 and 2.7 shoots per explant while their lamina explants produced 1.5 and 2.2 shoots per explant, respectively. A genotypic variation was evident as the line ELK345 was more productive for shoot development from both types of explants. In overall comparisons of different germination, growth and regeneration media, germination medium was most effective when supplemented with 0.5 mg/l 6-benzyladenine (BA) while both growth and regeneration media were most productive when contained a combination of 0.25 mg/l BA and 0.10 mg/l indole-3-butyric acid (IBA). Of all the treatments tested, the highest mean number of shoots per explant (8.3 shoots) and frequency of organogenic explants (75.6%) were obtained on regeneration medium supplemented with 0.25 mg/l BA and 0.10 mg/l IBA when petiole explants of the line ELK345 were excised from the seedlings that had been germinated on medium containing 0.5 mg/l BA followed by further growth on medium containing 0.25 mg/l BA and 0.10 mg/l IBA.  相似文献   

11.
Callus was produced on cotyledon, shoot tip, hypocotyl and root explants of twoCorchorus species on several media. Cytokinin was necessary for callus production on cotyledon explants. BothC.olitorius genotypes produced most callus on media with zeatin and either NAA or IAA, and theC.capsularis genotype produced most callus on media with IAA and either zeatin or BA. High frequencies of regenerated shoots were obtained from shoot tip explants of both species, from the apical meristem and from callus. Media with 2.0 mg 1−1 BA were superior for both species, and media with zeatin were equally good forC.capsularis only. More regeneration was obtained for all genotypes after subculture of callus on media with 2.0 mg 1−1 zeatin. Cotyledon callus produced less regeneration, also with differences between genotypes; explants of both genotypes ofC.olitorius produced regeneration on a medium with NAA and zeatin, and theC.capsularis genotype produced regeneration on a medium with IAA and BA. Limited regeneration from root explant callus was obtained forC.capsularis only on medium with BA and IAA. Regeneration was not obtained from hypocotyl callus. Further regeneration of shoots of both species was obtained from secondary callus after subculture, and from nodal segments of regenerated shoots and of seedling shoots cultured on basic MS medium without growth hormones. Roots were produced on about 80% of all shoots after transference to medium with 0.2 mg 1−1 IBA, and rooted plantlets survived and flowered normally after transference to compost.  相似文献   

12.
 A highly efficient three-stage protocol for the regeneration of chilli pepper (Capsicum annuum L.) from cotyledon explants was developed. This protocol used PAA in both the shoot-bud induction medium and the medium for elongation of the shoot buds. A superior medium for the induction of buds from the cotyledons was MS medium supplemented with BA (5 or 7 mg/l) + PAA (2 mg/l). Buds were elongated during the second stage on medium containing BA (2 or 5 mg/l) + PAA (2 mg/l). On this medium most of the buds elongated, and their number also increased due to the formation of new buds; bud elongation was achieved in 100% of the cultures provided the buds were induced in the primary stage on a medium supplemented with BA+PAA. The shoots that elongated in the second-stage rooted at 100% frequency on a medium supplemented with NAA (1 mg/l). The complete plantlets with well-developed root and shoot systems were transferred to field conditions where they grew to maturity, flowered and fruited normally. While shoot-bud induction from the cultured cotyledons was also observed on media supplemented with BA (5 or 7 mg/l) alone or in combination with IAA (0.2–2 mg/l), buds induced on these media were often distorted, with most not developing into normal shoots in the second-stage subculturing; a rosette of buds was seen in the second stage subculturing. On the other hand, PAA in combination with BA in the primary induction medium and second-stage medium promoted normal development and the elongation of shoot buds. Received: 28 July 1998 / Revision received: 22 December 1998 / Accepted: 19 February 1999  相似文献   

13.
A method for fast plant regeneration via organogenesis directly from Lycium barbarumleaf explants has been developed. The key factor for shoot regeneration was the presence of benzyladenine (BA) in the medium. NAA could only induce root formation and explant callusing. Murashige and Skoog (MS) medium supplemented with 2 mg/l BA and 0.5 mg/l NAA is the most efficient condition for shoot formation, with up to 92.6% shoot regeneration and no callus formation. All adventitious shoots cultured on MS medium supplemented with 1 mg/l IAA formed an extensive root system. Regenerated plants were morphologically normal and were also proved to be diploid (2n = 24). Using the optimized regeneration system, the genetic transformation of L. barbarumwas carried out mediated by Agrobacterium tumefaciensEHA101(pIG121Hm). 11.8% leaf explants produced kanamycin-resistant shoots after infection by A. tumefaciens.The putative transgenic nature of plants was confirmed by GUS assay and PCR analysis. Expression of the nptIIgene in the regenerated plants was also detected by observing the callus formation by leaf pieces on MS medium containing 0.2 mg/l 2,4-D and 0–100 mg/l kanamycin.  相似文献   

14.
Among the major factors affected plant regeneration in Brasica parachinensis, a combination of BAP (bacterial alhaline phosphatase) and NAA, at a concentration of 2 mg/L and 1 mg/L respectively, could raise 26.8% of the regeneration rate. It was also found that Ag- NO3 or ABA when supplemented in the culture medium could increase the plant regeneration rate by 79. 0% and 32.30% respectively, indicating that AgNO3 was superior to ABA as a single factor. With a combination of AgNO3 (4 mg/L) and ABA (0. 5 mg/L) added to MS medium already supplemented with ABA 2.0 mg/L and NAA 1.0 mg/L the authors had achieved remarkable results in frequency increase of 89.0%, 84.3% and 86.0% in three explant varieties of B. parachinensis, viz "49-19', "60D' and "70D', respectively. Among the three explants (cotyledon, hypocotyl and petiole with cotyledon), petiole with cotyledon possessed the highest capability for plant regeneration. In addition the age of seedlings and mode of inoculations also influenced the frequency of plant regeneration.' Histological observation evidenced that the mode of plant regeneration in B. parachinensis was of organogenesis. Adventitions buds derived from the cells of vascular parenchyma at the cut surface of petioles. Mature plants were developed after the plantlets were transferred into the plot.  相似文献   

15.
A high frequency shoot regeneration system for ornamental kale [Brassica oleracea L. var. acephala (D.C.) Alef.] was firstly established from seedling cotyledon and hypocotyl explants. The ability of cotyledon and hypocotyl to produce adventitious shoots varied depending upon genotype, seedling age and culture medium. The maximum shoot regeneration frequency was obtained when the explants from cv. Nagoya 4-d-old seedlings were cultured on Murashige and Skoog (MS) medium supplemented with 3 mg dm−3 6-benzylaminopurine (BA) and 0.1 mg dm−3 naphthaleneacetic acid (NAA). The frequency of shoot regeneration was 65.0 % for cotyledons, 76.1 % for hypocotyls; and the number of shoots per explant was 4.3 for cotyledons, 8.2 for hypocotyls. Hypocotyl explants were found to be more responsive for regeneration when compared with cotyledons. Among the 4 cultivars tested, Nagoya showed the best shoot regeneration response. The addition of 3.0 mg dm−3 AgNO3 was beneficial to shoot regeneration. Roots were formed on the base of the shoots when cultured on half-strength MS medium.  相似文献   

16.
Li D  Zhao K  Xie B  Zhang B  Luo K 《Plant cell reports》2003,21(8):785-788
Application of modern genetic manipulation has been limited in pepper ( Capsicum annuum L.) due to the lack of an efficient transformation system. Following the development of an efficient protocol for in vitro regeneration of pepper cotyledons, we investigated the key factors affecting transformation and established a highly efficient genetic transformation system using the pepper cotyledon as starting material. In this system, cotyledon explants are preconditioned for 2 days on kanamycin (km)-free DM1 medium [Murashige and Skoog (MS) salts/Gamborg B5 vitamins basal medium supplemented with 20 g/l sucrose, 5,000 mg/l DJ nutrients and a hormone combination of 1.0 mg/l indoleacetic acid (IAA) and 5.0 mg/l 6-benzyladenine (BA) solidified with 0.7% agar, pH 5.8], followed by co-cultivation with Agrobacterium tumefaciens on DM1 for 2 days and delay selection on DM1 with 500 mg/l carbenicillin (carb) for 2 days. The explants are then placed on DM1 containing 10 mg/l AgNO(3), 50 mg/l km-sulfate and 500 mg/l carb. After 4-5 weeks, the explants with buds are transferred to EM1 medium (MS salts/Gamborg B5 vitamins basal medium supplemented with 20 g/l sucrose, 5,000 mg/l DJ nutrients, 10 mg/l AgNO(3) and a hormone combination of 1.0 mg/l IAA, 3.0 mg/l BA and 2.0 mg/l gibberellic acid, solidified with 0.7% agar, pH 5.8) with 50 mg/l kanamycin and 500 mg/l carbenicillin for the elongation of buds. After 3-6 weeks, 1- to 2-cm-long elongated shoots are excised and planted on RM1 medium (MS basal medium supplemented with a hormone combination of 0.2 mg/l NAA and 0.1 mg/l IAA, solidified with 0.8% agar, pH 5.8) with 25 mg/l km and 200 mg/l carb for rooting. We tested four genotypes of pepper, and all presented a high differentiation efficiency (81.3% on average), elongation rate (61.5%) and rooting efficiency (89.5%). Polymerase chain reaction analysis results showed that 40.8% of the regenerated plantlets were transgenic plants.  相似文献   

17.
亚麻遗传转化体系的建立及几丁质酶基因导入的研究   总被引:14,自引:0,他引:14  
报道了亚麻遗传转化体系的建立和几丁质酶基因对亚麻遗传转化的研究。亚麻下胚轴切段培养在不同激素浓度的MS培养基上,诱导分化出不定芽。最佳的激素组合是MS+BA1mg/L+IAA0.5mg/L,分化频率可达97%。亚麻的下胚轴经带有几丁质 根癌农杆菌感染后,在含有100mg/L卡那霉素的选择分化培养基上,14 ̄21d就能产生抗生小芽,小芽进一步伸长后可在100mg/L卡那霉素的MS选择生根培养基(MS  相似文献   

18.
Two plant regeneration methods applicable to Leucaenaleucocephala were developed. In the first method, involvingorganogenesis via callus formation, cotyledon, hypocotyl and root segments wereinitiated on MS medium containing different concentrations ofN6-benzyladenine (BA), 2,4-dichlorophenoxyacetic acid (2,4-D), andnaphthaleneacetic acid (NAA). Both compact (type I) and friable (type II) calliwere obtained from the cotyledon and hypocotyl explants treated with differentconcentrations of the growth regulators. Shoots were generated only from thefriable calli formed from the cotyledon explants. The calli formed from thehypocotyl explants did not generate shoots and the root explants died withoutforming callus. Cotyledon explants from 3–4 day old seedlings showedmaximum callus induction compared to those from older seedlings. In a secondmethod involving direct organogenesis, excised cotyledons were cultured on 1/2MS medium containing 10–35 mg l–1N6-benzyladenine (BA) for 7–14 days. Transfer of thecotyledonsto regeneration medium containing low BA resulted in callus formation andsubsequent shoot regeneration from the base of the excised cotyledon explants,with up to 100% frequency. Regenerated shoots rooted best on a basal mediumcontaining no growth regulators.  相似文献   

19.
Tsai YT  Chen PY  To KY 《Plant cell reports》2012,31(7):1189-1198
Cleome spinosa is widely used as a garden ornamental in many countries. Here we determined the optimal conditions for plant regeneration from different tissue explants grown in vitro. Induction medium containing MS salts, MS vitamins, 3% sucrose, 1 mg l?1 BA, 200 mg l?1 timentin, and 0.8% agar was sufficient for shoot regeneration of all the tissue explants examined, including leaf, hypocotyl, and cotyledon. Subsequently, an Agrobacterium tumefaciens-mediated method was developed to transform the vector pCHS, which carries the transgenes Petunia chalcone synthase (chs) and selection marker neomycin phosphotransferase II (nptII), into C. spinosa. From a total of 368 cotyledon explants, 13 putative transgenic lines were regenerated from selection medium supplemented with 50 mg l?1 kanamycin and 200 mg l?1 timentin, and transferred to the greenhouse. Genomic PCR and Southern blot analyses revealed that the nptII transgene was present in all 13 transgenic plants. Similarly, when the Petunia chs transgene was used as a probe in Southern blot analysis, single or multiple hybridization bands were detected in 12 out of the 13 transgenic plants. In addition, T? progeny assay from selected transformants showed that the nptII transgene can be transmitted in a Mendelian manner from transgenic parents into their progeny. This is the first report of stable transformation of the C? dicotyledon C. spinosa, which will facilitate functional comparison of cell-type specific genes with counterpart C? dicotyledon C. gynandra using transgenic approaches.  相似文献   

20.
Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号