首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.  相似文献   

3.
Castration-resistant prostate cancer (CRPC) lacks effective treatment, and studies have shown that PARPi inhibitors, such as Olaparib, are somewhat effective; however, the efficacy of Olaparib in CRPC still needs to be further improved. Nitrogen permease regulator-like 2 (NPRL2) is reported to be a tumor suppressor candidate gene and is closely related to the DNA repair pathway, which can affect the sensitivity of many chemotherapeutic drugs. However, there is no research on whether NPRL2 is associated with sensitivity to Olaparib. Hence, in the present study, we examined the NPRL2 expression levels in several PCa cell lines (LNCaP, PC3, and enzalutamide-resistant LNCaP, named LNPER) by Western blot. In addition, we investigated the role of NPRL2 expression and silencing in cell proliferation and in the regulation of ataxia telangiectasia mutated (ATM), which can mediate DNA repair and sensitivity to Olaparib. Furthermore, we performed in vitro and in vivo experiments to determine the mechanism of action of NPRL2 in adjusting Olaparib sensitivity. Our findings demonstrated that the NPRL2 expression level was upregulated in PCa cells, especially CRPC cells. NPRL2 overexpression promoted growth and resistance to Olaparib, and NPRL2 silencing inhibited proliferation, enhanced sensitivity to Olaparib, and increased CRRL2 expression in PCa cells. In addition, the Olaparib-induced growth delay in NPRL2-silenced PC3 tumors in mice correlated with ATM signaling downregulation, an apoptosis increase and migration/invasion suppression. Our results indicate that NPRL2 silencing enhances sensitivity to Olaparib treatment in CRPC and that NPRL2 may serve as a potential therapeutic target and predict resistance to Olaparib in CRPC.  相似文献   

4.
Transforming growth factor-β (TGF-β) is a secreted polypeptide that signals via receptor serine/threonine kinases and intracellular Smad effectors. TGF-β inhibits proliferation and induces apoptosis in various cell types, and accumulation of loss-of-function mutations in the TGF-β receptor or Smad genes classify the pathway as a tumor suppressor in humans. In addition, various oncogenic pathways directly inactivate the TGF-β receptor-Smad pathway, thus favoring tumor growth. On the other hand, all human tumors overproduce TGF-β whose autocrine and paracrine actions promote tumor cell invasiveness and metastasis. Accordingly, TGF-β induces epithelial–mesenchymal transition, a differentiation switch that is required for transitory invasiveness of carcinoma cells. Tumor-derived TGF-β acting on stromal fibroblasts remodels the tumor matrix and induces expression of mitogenic signals towards the carcinoma cells, and upon acting on endothelial cells and pericytes, TGF-β regulates angiogenesis. Finally, TGF-β suppresses proliferation and differentiation of lymphocytes including cytolytic T cells, natural killer cells and macrophages, thus preventing immune surveillance of the developing tumor. Current clinical approaches aim at establishing novel cancer drugs whose mechanisms target the TGF-β pathway. In conclusion, TGF-β signaling is intimately implicated in tumor development and contributes to all cardinal features of tumor cell biology.  相似文献   

5.
The transforming growth factor-β (TGF-β) signaling pathway plays an important role in cancer cell proliferation, growth, metastasis, and apoptosis. It has been shown that TGF-β acts as a tumor suppressor in the early stages of the disease, and as a tumor promoter in its late stages. Mutations in the TGF-β signaling components, the TGF-β receptors and cytoplasmic signaling transducers, are frequently observed in colorectal carcinomas. Exploiting specific TGF-β receptor agonist and antagonist with antitumor properties may be a way of controlling cancer progression. This review summarizes the regulatory role of TGF-β signaling in the pathogenesis of colorectal cancer.  相似文献   

6.
The transforming growth factor-β (TGF-β) signaling pathway is often misregulated during cancer progression. In early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis. However, as the disease progresses, TGF-β switches to promote tumorigenic cell functions, such as epithelial-mesenchymal transition (EMT) and increased cell motility. Dramatic changes in the cellular microenvironment are also correlated with tumor progression, including an increase in tissue stiffness. However, it is unknown whether these changes in tissue stiffness can regulate the effects of TGF-β. To this end, we examined normal murine mammary gland cells and Madin-Darby canine kidney epithelial cells cultured on polyacrylamide gels with varying rigidity and treated with TGF-β1. Varying matrix rigidity switched the functional response to TGF-β1. Decreasing rigidity increased TGF-β1-induced apoptosis, whereas increasing rigidity resulted in EMT. Matrix rigidity did not change Smad signaling, but instead regulated the PI3K/Akt signaling pathway. Direct genetic and pharmacologic manipulations further demonstrated a role for PI3K/Akt signaling in the apoptotic and EMT responses. These findings demonstrate that matrix rigidity regulates a previously undescribed switch in TGF-β-induced cell functions and provide insight into how changes in tissue mechanics during disease might contribute to the cellular response to TGF-β.  相似文献   

7.
Objectives: The focus of this study was to determine the dedicator of cytokinesis 2 (DOCK2), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase-1 (JNK) and Akt signals involved in CXCL13-mediated prostate cancer (PCa) cell invasion and proliferation. Materials and methods: Androgen-sensitive (LNCaP), hormone-refractory (PC3) cells and normal cells (RWPE-1) were used to determine CXCL13-mediated PCa cell invasion and proliferation. Immuno-blotting, fast activated cell-based (FACE) ELISA, caspase activity, cell invasion and proliferation assays were performed to ascertain some of the signalling events involved in PCa cell proliferation and invasion. Results: Unlike androgen-sensitive LNCaP cells, we report for the first time that the hormone-refractory cell line, PC3, expresses DOCK2. CXCL13-mediated LNCaP and PC3 cell invasion was regulated by Akt and ERK1/2 activation in a DOCK2-independent fashion. CXCL13 also promoted LNCaP cell proliferation in a JNK-dependent fashion even in the absence of DOCK2. In contrast, CXCL13 induced PC3 cell proliferation through JNK activation, which required DOCK2. Conclusions: Our results show CXCL13-mediated PCa cell invasion requires Akt and ERK1/2 activation and suggests a new role for DOCK2 in proliferation of hormone-refractory CXCR5-positive PCa cells.  相似文献   

8.
9.
Toll-like receptors (TLRs) are widely expressed in immune cells and play a crucial role in many aspects of the immune response. Although some types of TLRs are also expressed in cancer cells, the effects and mechanisms of TLR signaling in cancer cells have not yet been fully elucidated. In the present study, we analyzed the effects of polyinosinic-polycytidylic acid [poly(I:C)], a TLR3 ligand, on three TLR3-expressing human prostate cancer cell lines (LNCaP, PC3, and DU145). We then further characterized the underlying mechanisms, focusing on the poly(I:C)-sensitive LNCaP cell line. Poly(I:C) significantly reduced the viability of LNCaP cells TLR3 and endosome dependently. One mechanism for the antitumor effect was caspase-dependent apoptosis, and another mechanism was poly(I:C)-induced growth arrest. Cell survival and proliferation of LNCaP cells depended on the PI3K/Akt pathway, and PI3K/Akt inhibitors induced apoptosis and growth arrest similar to poly(I:C) treatment. Additionally, poly(I:C) treatment caused dephosphorylation of Akt in LNCaP cells, but transduction of the constitutively active form of Akt rendered LNCaP cells resistant to poly(I:C). Immunoblot analysis of proliferation- and apoptosis-related molecules in poly(I:C)-treated LNCaP cells revealed participation of cyclinD1, c-Myc, p53, and NOXA. Interestingly, poly(I:C) treatment of LNCaP cells was accompanied by autophagy, which was cytoprotective toward poly(I:C)-induced apoptosis. Together, these findings indicate that TLR3 signaling triggers apoptosis and growth arrest of LNCaP cells partially through inactivation of the PI3K/Akt pathway and that treatment-associated autophagy plays a cytoprotective role.  相似文献   

10.
Kruppel-like factors (KLFs) play an important role in many biological processes including cell proliferation, differentiation and development. Our study showed that the level of KLF9 is lower in PCa cell lines compared to a benign prostate cell line; the androgen-independent cell line PC3 expresses significantly lower KLF9 than the androgen-dependent cell line, LNCaP. Forced overexpression of KLF9 suppressed cell growth, colony formation, and induced cell apoptosis in LNCaP cells. We also found that KLF9 expression was induced in response to apoptosis caused by flutamide, and further addition of dihydrotestosterone antagonized the action of flutamide and significantly decreased KLF9 expression. Furthermore, activation of the androgen receptor (AR) was inhibited by the overexpression of KLF9. Our research shows that KLF9 is lower in androgen-independent cell lines than in androgen-dependent cell lines; Overexpression of KLF9 dramatically suppresses the proliferation, anchorage-independent growth, and induces apoptosis in androgen-dependent cells; KLF9 inhibition on prostate cancer cell growth may be acting through the AR pathway. Our results therefore suggest that KLF9 may play a significant role in the transition from androgen-dependent to androgen-independent prostate cancer and is a potential target of prevention and therapy.  相似文献   

11.
12.
The transforming growth factor-β (TGF-β) signaling pathway is one of the important pathways involved in the cancer cell proliferation, invasion, migration, angiogenesis, apoptosis, as well as in metastasis by agitation or invasion of metastasis-related factors, including matrix metalloproteinase (MMP), epithelial-to-mesenchymal transition (EMT), tumor microenvironment (TME), cancer stem cells (CSCs), and cell adhesion molecules (CAMs). These data suggest its potential value as a therapeutic object in the treatment of malignancies including breast cancer. Several pharmacological approaches have been established to suppress TGF-β pathway; such as vaccines, small molecular inhibitors, antisense oligonucleotides, and monoclonal antibodies. Some of these are now approved by the US Food and Drug Administration for targeting the TGF-β signaling pathway. This study attempts to summarize the current data about the functions of TGF-β in cancer cells, and their probable application in the cancer therapy with a specific emphasis on recent preclinical and clinical research in the treatment of breast cancer and its prognostic value.  相似文献   

13.
摘要 目的:探究长链非编码RNA LINC01006对前列腺癌(prostate cancer, PCa)细胞增殖和侵袭能力的影响。方法:体外培养人前列腺正常上皮细胞系RWPE-1,人PCa细胞系LNCaP、22Rv1、PC3、C4-2b,应用实时定量PCR(qRT-PCR)技术检测上述细胞LINC01006的表达;分别通过转染小干扰RNA(siRNA)或过表达LINC01006的慢病毒载体,在LNCaP和PC3细胞中敲减LINC01006或稳定过表达LINC01006;应用CCK8、克隆形成实验检测LINC01006对PCa细胞增殖能力的影响;应用Transwell侵袭实验检测LINC01006对PCa细胞侵袭能力的影响;通过网站预测LINC01006的转录调控因子及其结合位点。结果:相较于正常前列腺上皮细胞系RWPE-1,PCa细胞系LNCaP、22Rv1、C4-2b和PC3中LINC01006表达明显升高(P<0.05)。敲减LINC01006后的PCa细胞系LNCaP和PC3的增殖和侵袭能力被显著抑制(P<0.05),过表达LINC1006则明显促进PCa细胞系LNCaP和PC3的增殖、侵袭能力(P<0.05)。通过PROMO网站预测可见AR是LINC01006的潜在转录调控因子,通过Cistrome DB数据库发现LINC01006上游启动子区域存在AR富集;敲减、抑制AR后LNCaP细胞中LINC01006表达明显升高(P<0.05)。结论:LINC01006在PCa细胞系中呈高表达,促进PCa细胞的增殖和侵袭,其受到AR负向调控,可能在PCa发生发展和去势抵抗形成过程中发挥作用。  相似文献   

14.
《Autophagy》2013,9(5):645-647
Transforming growth factor-β (TGF-β) has broad impacts on an array of diverse cellular functions including cell growth, differentiation, adhesion, migration, and apoptosis. Perturbations of the TGF-β signaling pathways are involved in progression of various tumors. Autophagy is a pivotal response of normal and cancer cells to environmental stresses and is induced by various stimuli. Otherwise, autophagy has an intrinsic function in tumor suppression. Recently, we demonstrated that TGF-β induces autophagy in hepatocellular carcinoma cells and mammary carcinoma cells. Autophagy activation by TGF-β is mediated through the Smad and JNK pathways. We show that siRNA-mediated knockdown of autophagy genes suppresses the growth inhibitory function of TGF-β and that autophagy activation potentiates TGF-β-mediated induction of proapoptotic genes, Bim and Bmf, in hepatoma cells. In this context, the autophagy pathway might contribute to the growth inhibitory effect of TGF-β, in conjunction with other anti-proliferative pathways downstream of TGF-β signaling. The context and manner by which the TGF-β signaling pathway regulates autophagy have implications for a better understanding of pathological and bidirectional roles of TGF-β signaling pathways in tumorigenesis.  相似文献   

15.
Transforming growth factor β (TGF-β) is part of the transforming growth factor β superfamily which is involved in many physiological processes and closely related to the carcinogenesis. Here, we discuss the TGF-β structure, function, and its canonical Smads signaling pathway. Importantly, TGF-β has been proved that it plays both tumor suppressor as well as an activator role in tumor progression. In an early stage, TGF-β inhibits cell proliferation and is involved in cell apoptosis. In an advanced tumor, TGF-β signaling pathway induces tumor invasion and metastasis through promoting angiogenesis, epithelial–mesenchymal transition, and immune escape. Furthermore, we are centered on updated research results into the inhibitors as drugs which have been studied in preclinical or clinical trials in tumor carcinogenesis to prevent the TGF-β synthesis and block its signaling pathways such as antibodies, antisense molecules, and small-molecule tyrosine kinase inhibitors. Thus, it is highlighting the crucial role of TGF-β in tumor therapy and may provide opportunities for the new antitumor strategies in patients with cancer.  相似文献   

16.
This study aims to investigate the expression of retinoblastoma binding protein 6 (RBBP6) in prostate cancer (PCa) and its association with the c‐Jun N‐terminal kinase (JNK) pathway. Immunohistochemistry was used to detect RBBP6 and JNK1/2 expression in PCa and benign prostatic hyperplasia tissues. RBBP6 expression in PCa cells (LNCap, PC3, and DU145) and noncancerous prostate epithelial cells (RWPE‐1) was determined by quantitative real‐time polymerase chain reaction and western blot analysis. PC3 and DU145 cells were transfected with RBBP6 small interfering RNAs (siRNAs) to examine the biological characteristics. Anisomycin (a JNK activator) with/without RBBP6 siRNA was used to treat PC3 cells for further investigating the ramification of the RBBP6‐mediated JNK pathway in PCa. PCa tissues and cells showed higher RBBP6 and JNK1/2 expression. RBBP6 was positively correlated with JNK1/2 in PCa tissues. Besides, RBBP6 expression was correlated to clinical tumor stage, lymph node metastasis, Gleason grade, preoperative prostate‐specific antigen level, as well as prognosis of PCa. RBBP6 siRNA reduced cell proliferation, arrested cells at G2/M, and promoted cell apoptosis, and suppressed JNK pathway. In addition, migration and invasion decreased after the RBBP6 siRNA transfection with downregulated matrix metallopeptidase‐2 (MMP‐2) and MMP‐9. Anisomycin promoted the proliferation, invasion, and migration of PC3 cells and inhibited PC3 cell apoptosis, which could be reversed by RBBP6 siRNA. RBBP6 expression was upregulated in PCa tissues and positively correlated with expression level of JNK1/2. With inhibition of RBBP6 expression, the proliferation, invasion, and migration of PCa cells decreased dramatically, while PC3 cell apoptosis increased appreciably, accompanied by the suppression of the JNK pathway.  相似文献   

17.
The present research focuses on the influence of CCCTC‐binding factor (CTCF) on prostate cancer (PC) via the regulation of the FoxO signalling pathway. A bioinformatics analysis was conducted to screen out target genes for CTCF in LNCaP cells and to enrich the relevant pathways in LNCaP cells. It was found that the FoxO pathway was enriched according to the ChIP‐seq results of CTCF. The expression of CTCF, pFoxO1a, FoxO1a, pFoxO3a and FoxO3a was tested by RT‐qPCR and Western blot. Inhibition of CTCF could lead to the up‐regulation of the FoxO signalling pathway. The rates of cell proliferation, cell invasion and apoptosis were examined by MTT assay, cell invasion assay and flow cytometry under different interference conditions. Down‐regulation of CTCF could suppress cell proliferation, cell invasion and facilitate cell apoptosis. Lastly, the effect of CTCF on tumour growth was determined in nude mice. Inhibition of CTCF regulated the FoxO signalling pathway, which retarded tumour growth in vivo. In conclusion, CTCF regulates the FoxO signalling pathway to affect the progress of PC.  相似文献   

18.
While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy.  相似文献   

19.
Xu  Wen-hao  Liang  Da-yan  Wang  Qi  Shen  Jinhua  Liu  Qing-Hua  Peng  Yong-Bo 《Molecular and cellular biochemistry》2019,456(1-2):95-104

Lysine-specific demethylase 2A (KDM2A, also known as JHDM1A or FBXL11) plays an important role in regulating cell proliferation. However, the mechanisms on KDM2A controlling cell proliferation are varied among cell types, even controversial conclusions have been drawn. In order to elucidate the functions and underlying mechanisms for KDM2A controlling cell proliferation and apoptosis, we screened a KDM2A knockout HEK293T cell lines by CRISPR–Cas9 to illustrate the effects of KDM2A on both biological process. The results indicate that knocking down expression of KDM2A can significantly weaken HEK293T cell proliferation. The cell cycle analysis via flow cytometry demonstrate that knockdown expression of KDM2A will lead more cells arrested at G2/M phase. Through the RNA-seq analysis of the differential expressed genes between KDM2A knockdown HEK293T cells and wild type, we screened out that TGF-β pathway was significantly downregulated in KDM2A knockdown cells, which indicates that TGF-β signaling pathway might be the downstream target of KDM2A to regulate cell proliferation. When the KDM2A knockdown HEK293T cells were transient-transfected with KDM2A overexpression plasmid or treated by TGF-β agonist hydrochloride, the cell proliferation levels can be partial or completely rescued. However, the TGF-β inhibitor LY2109761 can significantly inhibit the KDM2A WT cells proliferation, but not the KDM2A knockdown HEK293T cells. Taken together, these findings suggested that KDM2A might be a key regulator of cell proliferation and cell cycle via impacting TGF-β signaling pathway.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号