首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
 Barley (Hordeum vulgare L.) hordeins are alcohol-soluble redundant storage proteins that accumulate in protein bodies of the starchy endosperm during seed development. Strong endosperm-specific β-glucuronidase gene-(uidA; gus) expression driven by B1- and D-hordein promoters was observed in stably transformed barley plants co-transformed with the selectable herbicide resistance gene, bar. PCR analysis using DNA from calli of 22 different lines transformed with B1- or D-hordein promoter-uidA fusions showed the expected 1.8-kb uidA fragment after PCR amplification. DNA-blot analysis of genomic DNA from T0 leaf tissue of 13 lines showed that 12 (11 independent) lines produced uidA fragments and that one line was uidA-negative. T1 progeny from 6 out of 12 independent regenerable transgenic lines tested for uidA expression showed a 3 : 1 segregation pattern. Of the remaining six transgenic lines, one showed a segregation ratio of 15 : 1 for GUS, one expressed bar alone, one lacked transmission of either gene to T1 progeny, and three were sterile. Stable GUS expression driven by the hordein promoters was observed in T5 progeny in one line, T4 progeny in one line, T3 progeny in three lines and T2 or T1 progeny in the remaining two fertile lines tested; homozygous transgenic plants were obtained from three lines. In the homozygous lines the expression of the GUS protein, driven by either the B1- or D-hordein promoters, was highly expressed in endosperm at early to mid-maturation stages. Expression of bar driven by the maize ubiquitin promoter was also stably transmitted to T1 progeny in seven out of eight lines tested. However, in most lines PAT expression driven by the maize ubiquitin promoter was gradually lost in T2 or later generations; one homozygous line was obtained. In contrast, six out of seven lines stably expressed GUS driven by the hordein promoters in T2 or later generations. We conclude that the B1- and D-hordein promoters can be used to engineer, and subsequently study, stable endosperm-specific gene expression in barley and potentially to modify barley seeds through genetic engineering. Received: 28 May 1998 / Accepted: 19 December 1998  相似文献   

2.
 Genetic transformation using shoot meristematic cultures (SMCs) derived from germinated seedlings is established in commercial varieties of oat cv 'Garry' and barley cv 'Harrington'. Six-month-old SMCs of oat were induced on MPM and bombarded with bar and uidA; 9-month-old SMCs of barley were induced on an improved medium (MPM-MC) containing maltose and high levels of copper and bombarded with bar/nptII and uidA. After 3–4 months on selection, seven independent transgenic lines of oat were obtained, two lines of barley. All transgenic lines produced T0 plants; five lines of oat and one line of barley were self-fertile, and the other barley line produced T1 seed when out-crossed. Both Mendelian and non-Mendelian segregation ratios of transgene expression were observed in T1 and T2 progeny of transgenic oat. Normal as well as low physical transmission of the transgenes was also seen in T1 and T2 progeny of oat. The bar-containing line of barley showed stable transgene expression in all of the T1 and T2 progeny tested. Received: 4 January 1999 / Accepted: 14 January 1999  相似文献   

3.
Variation in the inheritance of expression among subclones for an unselected (uidA) and a selected (bar) transgene was analyzed in two individual transformation events in maize. The unselectable gene (uidA) and the selectable gene (bar), on two separate plasmids, were transferred to maize (Hi-II derivative) by particle bombardment of embryogenic calli or suspension cells. A total of 188 fertile T1 plants were obtained from one transformant (transformation event BG which integrated uidA and bar). A total of 98 fertile T1 plants were obtained from a second transformant (transformation event B which integrated bar). Through self-pollination and/or cross-pollination in the greenhouse, approximately 10 000 T2 progeny were obtained from event BG, and more than 1000 T2 progeny were obtained from event B. Segregation of transgene expression was analyzed statistically in a total of 2350 T2 progeny from 40 T1 subclones of event BG and in 217 T2 progeny from six T1 subclones from event B. Variation in the inheritance of expression among subclones for the two transgenes (uidA and bar) was observed in the two transformants. A significant difference was observed between the use of the female or male as the transgenic parent in the inheritance of expression for the two transgenes in event BG. No inheritance through the pollen was observed in two of four T1 subclones analyzed in event B. Co-expression analysis of event BG showed that both transgenes were co-expressed in 67.7% of the T2 plants which expressed at least one of the two transgenes. Of the T2 expressing plants, 30.4% expressed only bar, and 1.9% expressed only uidA. Inactivation of the unselected (uidA) and the selected (bar) transgenes was observed in individual T2 plants.  相似文献   

4.
5.
 Highly regenerative tissues of tall fescue and red fescue produced from mature seed-derived embryogenic callus were induced and proliferated on medium containing 2,4-dichlorophenoxyacetic acid (4.5 or 9.0 μM), 6-benzylaminopurine (0, 0.044, 0.44 or 2.2 μM) and cupric sulfate (0.1 or 5.0 μM) under dim-light conditions (10 to 30 μE m–2 s–1, 16 h light). Tall fescue tissues were transformed with three plasmids containing the genes for hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA;gus), and red fescue with three plasmids containing hpt, uidA and a synthetic green fluorescent protein gene [sgfp(S65T)]. DNA from T0 plants of eight independently transformed lines from tall fescue and 11 from red fescue were analyzed by PCR and DNA blot hybridization. The co-expression frequency of all three transgenes [hpt/bar/uidA or hpt/uidA/sgfp(S65T)] in transgenic tall fescue and red fescue plants was 25–27%; for two transgenes [hpt/bar or hpt/uidA for tall fescue and hpt/uidA or hpt/sgfp(S65T) for red fescue], the co-expression frequency was 50–75%. Received: 28 September 1999 / Revision received: 13 March 2000 / Accepted: 16 March 2000  相似文献   

6.
Zea mays transformants produced by particle bombardment of embryogenic suspension culture cells of the genotype A188 × B73 and selected on kanamycin or bialaphos were characterized with respect to transgene integration, expression, and inheritance. Selection on bialaphos, mediated by thebar orpat genes, was more efficient than selection on kanamycin, mediated by thenptII gene. Most transformants contained multicopy, single locus, transgene insertion events. A transgene expression cassette was more likely to be rearranged if expression of that gene was not selected for during callus growth. Not all plants regenerated from calli representing single transformation events expressed the transgenes, and a non-selectable gene (uidA) was expressed in fewer plants than was the selectable transgene. Mendelian inheritance of transgenes consistent with transgene insertion at a single locus was observed for approximately two thirds of the transformants assessed. Transgene expression was typically, but not always, predictable in progeny plants-transgene silencing, as well as poor transgene transmission to progeny, was observed in some plant lines in which the parent plants had expressed the transgene.  相似文献   

7.
The success of contemporary breeding programmes involving genetic engineering depends on the stability of transgene expression over many generations. We studied the stability of transgene expression in 40 independent rice plant lines representing 11 diverse cultivated varieties. Each line contained three or four different transgenes delivered by particle bombardment, either by cotransformation or in the form of a cointegrate vector. Approximately 75% of the lines (29/40) demonstrated Mendelian inheritance of all transgenes, suggesting integration at a single locus. We found that levels of transgene expression varied among different lines, but primary transformants showing high-level expression of the gna, gusA, hpt and bar transgenes faithfully transmitted these traits to progeny. Furthermore, we found that cry1Ac and cry2A transgene expression was stably inherited when primary transformants showed moderate or low-level expression. Our results show that six transgenes (three markers and three insect-resistance genes) were stably expressed over four generations of transgenic rice plants. We showed that transgene expression was stable in lines of all the rice genotypes we analysed. Our data represent a step forward in the transfer of rice genetic engineering technology from model varieties to elite breeding lines grown in different parts of the world. Received: 22 March 1999 / Accepted: 6 December 1999  相似文献   

8.
Two different types of T-DNA insert were found in tobacco plants transformed with Agrobacterium tumefaciens. High-expressing (H) types had one copy of the T-DNA at a locus and produced high expression of the transgene uidA, as measured by uidA RNA levels and -glucuronidase activity; low-expressing (L) types had inverted repeats of the T-DNA at a locus and produced low uidA expression. H-types from different transformants acted additively, and cross-fertilization between two different homozygous transformants with H-type inserts produced F1 plants with GUS activity that equalled the parents and individual F2 plants with 50%, 100%, 150% and 200% of parental values. However, the L-type inserts worked in trans to suppress uidA expression from H-type inserts when both were present in the same genome. Hence when a transformant homozygous for the L-type insert was crossed to one homozygous for the H-type, all plants in the F1 and F2 generations with both types of insert had low GUS activity while F2 segregants that only had the H-type inserts had high GUS activity again. Suppression of the H-type gene was associated with increased methylation of the insert. Particle acceleration was used to introduce further copies of uidA into tissues of the transformants. Regardless of the promoter used, those plants with endogenous L-type inserts showed none of the distinct loci of GUS activity readily visible in material with no inserts, showing that L-type inserts could suppress not only the uidA expression of genomic homologues, but also of copies added in vitro.  相似文献   

9.
Expression of a transgene is rarely analysed in the androgenetic progenies of the transgenic plants. Here, we report differential transgene expression in androgenetic haploid and doubled haploid (DH) tobacco plants as compared to the diploid parental lines, thus demonstrating a gene dosage effect. Using Agrobacterium-mediated transformation, and bacterial reporter genes encoding neomycin phosphotransferase (nptII) and β-glucuronidase (uidA/ GUS), driven respectively by the mas 1′ and mas 2′ promoters, we have generated more than 150 independent transgenic (R0) Nicotiana tabacum plants containing one or more T-DNA copies. Transgene analyses of these R0, their selfed R1 lines and their corresponding haploid progenies showed an obvious position effect (site of T-DNA insertion on chromosome) on uidA expression. However, transgene (GUS) expression levels were not proportional to transgene copy number. More than 150 haploids and doubled haploids, induced by treatment with colchicine, were produced from 20 independent transgenic R0 plants containing single and multiple copies of the uidA gene. We observed that homozygous DH plants expressed GUS at approximately 2.9-fold the level of the corresponding parental haploid plants. This increase in transgene expression may be attributed mainly to the increase (2-fold) in chromosome number. Based on this observation, we suggest a strong link between chromosome number (ploidy dosage effect) and transgene expression. In particular, we demonstrate the effect on its expression level of converting the transgene from the heterozygous (in R0 plants) to the homozygous (DH) state: e.g. an increase of 50% was observed in the homozygous DH as compared to the original heterozygous diploid plants. We propose that ploidy coupled with homozygosity can result in a new type of gene activation, creating differences in gene expression patterns. Received: 27 April 1998 / Accepted: 12 August 1998  相似文献   

10.
The effects of a high-growth genetic background on the growth of mice hemizygous for one of two growth hormone transgenes were examined. Male mice hemizygous for wild-type (W) and dwarf mutant (M) bovine growth hormone (bGH) transgenes were crossed with females of a high-growth selected (S) and control (C) line as follows: W x S, W x C, M x S and M x C. Body weights of progeny were recorded weekly from 2 to 10 weeks of age. F1 progeny were classified as carriers (P) or non-carriers (N) of the transgene by assaying tail DNA for bGH using the polymerase chain reaction and agarose gel electrophoresis. A deficiency in the number of f1 progeny carrying the W (P<0.05) and M (P<0.01) bGH transgene was most likely due to differential prenatal and early postnatal mortality. Bodyweight means of wild-type transgenic mice were larger (P < 0.05) than those of non-transgenic littermates by 3 weeks of age in a C background in contrast to 5 weeks in S. The wild-type bGH transgene increased adult body weights more in the C (155%) than in the S (136%) background, indicating transgene expression by selection background interaction (P < 0.05). However, the growth response to the wild-type transgene in the S background was still large. The dwarf mutant transgene had a greater effect on growth reduction in the S (70%) than in the C (84%) background, thus causing transgene expression by selection background interaction (P < 0.05). Gender by wild-type transgene effect interactions (P < 0.001) for adult body weight were caused by the transgene reducing the gender difference for body weight in C and eliminating it in S. The dwarf mutant caused a larger negative effect on growth in males than in females, resulting in a gender by dwarf mutant transgene interaction (P < 0.001) for adult body weights. Results indicate that the effect of a GH transgene on growth can be affected both by a high-growth genetic background and the gender of progeny.  相似文献   

11.
Silencing ofNia host genes and transgenes (encoding nitrate reductase) was previously achieved by introducing into tobacco plants the tobaccoNia2 cDNA cloned downstream of the cauliflower mosaic virus (CaMV) 35S promoter. To check whetherNii host genes and transgenes (encoding nitrite reductase, the second enzyme of the nitrate assimilation pathway) were also susceptible to silencing, a transgene consisting of the tobaccoNii1 gene with two copies of the enhancer of the 35S promoter cloned 1 kb upstream of theNii promoter region was introduced into tobacco plants. Among nine independent transformants analysed, two showed silencing ofNii host genes and transgenes in some descendants after selfing, but never after back-crossing with wild-type plants, suggesting that silencing depends on the number of transgene loci and/or on certain allelic or ectopic combinations of transgene loci. In one transformant carrying a single transgene locus in a homozygous state, silencing was triggered in all progeny plants of each generation, 20 to 50 days after germination. Field trial analysis confirmed that silencing was not triggered when the transgene locus of this latter line was present in a hemizygous state. In addition, it was revealed that silencing can be triggered, albeit at low frequency and later during the development, when this transgene locus is brought into the presence of a non-allelic transgene locus by crossing, suggesting that a homozygous state is not absolutely required.  相似文献   

12.
To evaluate and characterize the stability of traits transferred viaAgrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the -glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced byAgrobacterium can be inherited in a Mendelian manner.Abbreviations GUS -Glucuronidase - MS Murashige and Skoog - MU 4-Methylumbelliferone - NPTII Neomycin phosphotransferase II  相似文献   

13.
14.
Choi HW  Lemaux PG  Cho MJ 《Plant cell reports》2003,21(11):1108-1120
In order to evaluate the long-term stability of transgene expression driven by the B(1)- and D-hordein promoters in transgenic barley ( Hordeum vulgare L., 2 n=2 x=14), we analyzed plants from 15 independent transgenic barley lines [6 for uidA and 9 for sgfp(S65T)] produced via microprojectile bombardment of immature embryos; 4 were diploid and 11 were tetraploid. The expression and inheritance of transgenes were determined by analysis of functional transgene expression, polymerase chain reaction and fluorescence in situ hybridization (FISH). Ability to express transgenes driven by either B(1)- or D-hordein promoter was inherited in T(4) and later generations: T(4) (2 lines), T(5) (8 lines), T(6) (3 lines), T(8) (1 line) and T(9) (1 line). Homozygous transgenic plants were obtained from 12 lines [5 for uidA and 7 for sgfp(S65T)]; the remaining lines are currently being analyzed. The application of the FISH technique for physical mapping of chromosomes was useful for early screening of homozygous plants by examining for presence of the transgene. For example, one line expressing uidA, and shown to have doublet fluorescence signals on a pair of homologous chromosomes was confirmed as a homozygous line by its segregation ratio; additionally this line showed stable inheritance of the transgene to T(9) progeny. The expression of transgenes in most lines (14 out of 15 lines) driven by hordein promoters was stably transmitted to T(4) or later generations, although there was a skewed segregation pattern (1:1) from the T(1) generation onward in the remaining line. In contrast, transgene silencing or transgene loss under the control of the maize ubiquitin promoter was observed in progeny of only 6 out of 15 lines.  相似文献   

15.
The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity.  相似文献   

16.
 Using fluorescence in situ hybridization (FISH) we localized introduced genes on metaphase chromosomes of barley, wheat, and triticale transformed by microprojectile bombardment of microspores and scutellar tissue with the pDB1 plasmid containing the uidA and bar genes. Thirteen integration sites were detected in the nine lines analysed. Southern analysis showed that three or more copies of the plasmid were present in the lines. In a triticale line containing four copies three different integration sites were identified, indicating that the method described is sensitive enough for the detection of single-copy integrations. There was a slight tendency towards the localization of transgenes in distal chromosome regions. Using the GAA-satellite sequence for chromosome banding, the chromosomes containing the inserted genes were identified in most cases. Two barley lines derived from the same transformant showed a totally different integration pattern. Southern analysis confirmed that the inserted genes were segregating independently, resulting in different integration patterns among the progeny lines. The application of the FISH technique for the analysis of transgenic plants is discussed. Received: 28 October 1996/Accepted: 15 November 1996  相似文献   

17.
The RB7 matrix attachment region (MAR), when flanking a uidA (GUS) reporter gene, has been previously shown to increase uidA gene expression by 60-fold in stably transformed tobacco suspension cell lines. We have now used the same co-transformation procedure to determine the effect of flanking MARs on uidA gene expression in tobacco plants. The neomycin phosphotransferase selection gene and uidA reporter gene on separate plasmids were co-transformed into seedlings by microprojectile bombardment. In primary transgenic plants, the average uidA expression in plants with MARs was twofold greater than in control plants without MARs, but there was no effect on variation of expression. GUS activity was not proportional to the number of integrated uidA transgenes over the entire range of copy numbers. However, in the lower part of the copy number range, MAR lines show a tendency for expression to increase with copy number. Transgene expression in backcross progenies of the MAR-containing lines averaged threefold higher than in control progenies. MARs also reduced the loss of transgene expression in the BC1 generation. Sixty-three per cent of the 21 MAR-containing primary transformants, but only 20% of the 14 control primary transformants, produced backcross progenies in which no loss of transgene expression was observed. These observations are discussed in the context of homology-dependent gene silencing.  相似文献   

18.
Segregating T1, T2 and T3 transgenic rice populations, derived from independent particle-bombardment-mediated transformation events were examined in order to assess the effect of gene dosage on transgene expression levels and stability. The expression level of the unselected β-glucuronidase (gusA) reporter gene was quantified in plants from these populations. The gusA gene dosage was determined by segregation analysis of progeny seedlings at the structural level (by PCR) and at the expression level. For some transformation events a gene dosage effect on transgene expression was observed, leading to higher transgene expression levels in homozygous progeny than in hemizygous progeny or primary transgenic plants. However, in many other transformation events, the homozygous state appears to be disadvantageous, being associated with lower transgene expression levels, gene silencing or counter-selection of homozygous plants across generations. Change of gene dosage is probably one of the key factors influencing transgene expression levels and stability in transgenic rice. This is particularly important when considering molecular genetic studies and crop improvement programmes. The possible influence of matrix attachment regions (MARs) in increasing the likelihood of an additive effect on transgene expression level is discussed. Received: 21 March 2001 / Accepted: 29 June 2001  相似文献   

19.
Two barley transformation systems, Agrobacterium-mediated and particle bombardment, were compared in terms of transformation efficiency, transgene copy number, expression, inheritance and physical structure of the transgenic loci using fluorescence in situ hybridisation (FISH). The efficiency of Agrobacterium-mediated transformation was double that obtained with particle bombardment. While 100% of the Agrobacterium-derived lines integrated between one and three copies of the transgene, 60% of the transgenic lines derived by particle bombardment integrated more than eight copies of the transgene. In most of the Agrobacterium-derived lines, the integrated T-DNA was stable and inherited as a simple Mendelian trait. Transgene silencing was frequently observed in the T1 populations of the bombardment-derived lines. The FISH technique was able to reveal additional details of the transgene integration site. For the efficient production of transgenic barley plants, with stable transgene expression and reduced silencing, the Agrobacterium-mediated method appears to offer significant advantages over particle bombardment.  相似文献   

20.
Summary The partial sterility found in several advanced generation, sodium azide-induced lines of spring barley (Hordeum vulgare L.) was investigated. Plants of mutant lines were reciprocally crossed with plants of their untreated mother lines. Spike sterility was measured in the selfed offspring of the plants crossed and in F1 and F2 progeny. Pollen sterility and endosperm development were analyzed in the selfed offspring of the plants crossed. Results indicated that the sterility was inherited in the mutant lines and was not caused by translocations, inversions, endosperm lethals, embryo-endosperm lethals, or major gene mutations. Furthermore, the sterility was not cytoplasmically inherited, and was essentially eliminated in the F1 and F2 of crosses between partially sterile lines and their fertile parents. Results suggest that the sterility may be caused by an environmental interaction with deleterious, homozygous recessive, minor gene mutations that were in the heterozygous condition when the mutant lines were originally selected.Scientific paper No. 7441, College of Agriculture Research Center, Washington State University, Pullman, Wash., USA, Project No. 1006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号