首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
To study stability and inheritance of two different transgenes in barley, we crossed a homozygous T8 plant, having uidA (or gus) driven by the barley endosperm-specific B1-hordein promoter (localized in the near centromeric region of chromosome 7H) with a second homozygous T4 plant, having sgfp(S65T) driven by the barley endosperm-specific D-hordein promoter (localized on the subtelomeric region of chromosome 2H). Both lines stably expressed the two transgenes in the generations prior to the cross. Three independently crossed F1 progeny were analyzed by PCR for both uidA and sgfp(S65T) in each plant and functional expression of GUS and GFP in F2 seeds followed a 3:1 Mendelian segregation ratio and transgenes were localized by FISH to the same location as in the parental plants. FISH was used to screen F2 plants for homozygosity of both transgenes; four homozygous plants were identified from the two crossed lines tested. FISH results showing presence of transgenes were consistent with segregation ratios of expression of both transgenes, indicating that the two transgenes were expressed without transgene silencing in homozygous progeny advanced to the F3 and F4 generations. Thus, even after crossing independently transformed, homozygous parental plants containing a single, stably expressed transgene, progeny were obtained that continued to express multiple transgenes through generation advance. Such stability of transgenes, following outcrossing, is an important attribute for trait modification and for gene flow studies.  相似文献   

2.
 Genetic transformation using shoot meristematic cultures (SMCs) derived from germinated seedlings is established in commercial varieties of oat cv 'Garry' and barley cv 'Harrington'. Six-month-old SMCs of oat were induced on MPM and bombarded with bar and uidA; 9-month-old SMCs of barley were induced on an improved medium (MPM-MC) containing maltose and high levels of copper and bombarded with bar/nptII and uidA. After 3–4 months on selection, seven independent transgenic lines of oat were obtained, two lines of barley. All transgenic lines produced T0 plants; five lines of oat and one line of barley were self-fertile, and the other barley line produced T1 seed when out-crossed. Both Mendelian and non-Mendelian segregation ratios of transgene expression were observed in T1 and T2 progeny of transgenic oat. Normal as well as low physical transmission of the transgenes was also seen in T1 and T2 progeny of oat. The bar-containing line of barley showed stable transgene expression in all of the T1 and T2 progeny tested. Received: 4 January 1999 / Accepted: 14 January 1999  相似文献   

3.
Expression of a transgene is rarely analysed in the androgenetic progenies of the transgenic plants. Here, we report differential transgene expression in androgenetic haploid and doubled haploid (DH) tobacco plants as compared to the diploid parental lines, thus demonstrating a gene dosage effect. Using Agrobacterium-mediated transformation, and bacterial reporter genes encoding neomycin phosphotransferase (nptII) and β-glucuronidase (uidA/ GUS), driven respectively by the mas 1′ and mas 2′ promoters, we have generated more than 150 independent transgenic (R0) Nicotiana tabacum plants containing one or more T-DNA copies. Transgene analyses of these R0, their selfed R1 lines and their corresponding haploid progenies showed an obvious position effect (site of T-DNA insertion on chromosome) on uidA expression. However, transgene (GUS) expression levels were not proportional to transgene copy number. More than 150 haploids and doubled haploids, induced by treatment with colchicine, were produced from 20 independent transgenic R0 plants containing single and multiple copies of the uidA gene. We observed that homozygous DH plants expressed GUS at approximately 2.9-fold the level of the corresponding parental haploid plants. This increase in transgene expression may be attributed mainly to the increase (2-fold) in chromosome number. Based on this observation, we suggest a strong link between chromosome number (ploidy dosage effect) and transgene expression. In particular, we demonstrate the effect on its expression level of converting the transgene from the heterozygous (in R0 plants) to the homozygous (DH) state: e.g. an increase of 50% was observed in the homozygous DH as compared to the original heterozygous diploid plants. We propose that ploidy coupled with homozygosity can result in a new type of gene activation, creating differences in gene expression patterns. Received: 27 April 1998 / Accepted: 12 August 1998  相似文献   

4.
 Highly regenerative tissues of tall fescue and red fescue produced from mature seed-derived embryogenic callus were induced and proliferated on medium containing 2,4-dichlorophenoxyacetic acid (4.5 or 9.0 μM), 6-benzylaminopurine (0, 0.044, 0.44 or 2.2 μM) and cupric sulfate (0.1 or 5.0 μM) under dim-light conditions (10 to 30 μE m–2 s–1, 16 h light). Tall fescue tissues were transformed with three plasmids containing the genes for hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA;gus), and red fescue with three plasmids containing hpt, uidA and a synthetic green fluorescent protein gene [sgfp(S65T)]. DNA from T0 plants of eight independently transformed lines from tall fescue and 11 from red fescue were analyzed by PCR and DNA blot hybridization. The co-expression frequency of all three transgenes [hpt/bar/uidA or hpt/uidA/sgfp(S65T)] in transgenic tall fescue and red fescue plants was 25–27%; for two transgenes [hpt/bar or hpt/uidA for tall fescue and hpt/uidA or hpt/sgfp(S65T) for red fescue], the co-expression frequency was 50–75%. Received: 28 September 1999 / Revision received: 13 March 2000 / Accepted: 16 March 2000  相似文献   

5.
6.
The feasibility of producing plant cell wall polysaccharide-hydrolysing feed enzymes in the endosperm of barley grain was investigated. The coding region of a modified xylanase gene (xynA) from the rumen fungus, Neocallimastix patriciarum, linked with an endosperm-specific promoter from cereal storage protein genes was introduced into barley by Agrobacterium-mediated transformation. Twenty-four independently transformed barley lines with the xylanase gene were produced and analysed. The fungal xylanase was produced in the developing endosperm under the control of either the rice glutelin B-1 (GluB-1) or barley B1 hordein (Hor2-4) promoter. The rice GluB-1 promoter provided an apparently higher expression level of recombinant proteins in barley grain than the barley Hor2-4 promoter in both transient and stable expression experiments. In particular, the mean value for the fungal xylanase activity driven by the GluB-1 promoter in the mature grains of transgenic barley was more than twice that with the Hor2-4 promoter. Expression of the xylanase transgene under these endosperm-specific promoters was not observed in the leaf, stem and root tissues. Accumulation of the fungal xylanase in the developing grains of transgenic barley followed the pattern of storage protein deposition. The xylanase was stably maintained in the grain during grain maturation and desiccation and post-harvest storage. These results indicate that the cereal grain expression system may provide an economic means for large scale production of feed enzymes in the future.  相似文献   

7.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

8.
Transgenic plants of triticale cv. Wanad were obtained after transformation using three combinations of strain/vectors. Two of them were hypervirulent Agrobacterium tumefaciens strains (AGL1 and EHA101) with vectors containing bar under maize ubiquitin 1 promoter (pDM805), and both hpt under p35S and nptII under pnos (pGAH). The third one was a regular LBA4404 strain containing super-binary plasmid pTOK233 with selection genes the same as in pGAH. The efficiency of transformation was from 0 to 16% and it was dependent on the selection factor, auxin pretreatment, and the strain/vector combination. The highest number of transgenic plants was obtained after transformation with LBA4404(pTOK233) and kanamycin selection. Pretreatment of explants with picloram led to the highest number of plants obtained after transformation with both Agrobacterium/vector systems LBA4404(pTOK233) and EHA101(pGAH) and selected with kanamycin. Transgenic character of selected plants was examined by PCR using specific primers for bar, gus, nptII, and hpt and confirmed by Southern blot hybridization analysis. There was no GUS expression in T0 transgenic plants transformed with gus under p35S. However the GUS expression was detectable in the progeny of some lines. Only 30% of 46 transgenic lines showed Mendelian segregation of GUS expressing to GUS not expressing plants. In the remaining 70% the segregation was non-Mendelian and the rate was much lower than 3:1. Factors that might effect expression of transgenes in allohexaploid monocot species are discussed.  相似文献   

9.
10.
 Genetic transformation of Petunia hybrida with a reporter gene and selectable marker gene (35S-bar) was achieved in similar frequencies by pollinating flowers with pollen vacuum-infiltrated with Agrobacterium tumefaciens or applying a drop of Agrobacterium suspension to the stigma immediately prior to pollination. Nine percent of the T1, and 5% of the T2 progeny germinated in nutrient medium with 3 mgl/l BastaR. Polymerase chain reaction assays indicated that of the BastaR-resistant plants, 66% of the T1 plants, and 61% of the T2 plants harboured the GUS gene. Histochemical assays showed that 10% of the putatively transformed T1 plants and 5% of their progeny expressed GUS in leaf tissue, pistils and young anthers. Southern hybridization confirmed genomic integration of the bar gene in one to three places in selected T1 and T2 progeny. Received: 12 March 1999 / Revision received: 1 October 1999 / Accepted: 20 October 1999  相似文献   

11.
Choi HW  Lemaux PG  Cho MJ 《Plant cell reports》2003,21(11):1108-1120
In order to evaluate the long-term stability of transgene expression driven by the B(1)- and D-hordein promoters in transgenic barley ( Hordeum vulgare L., 2 n=2 x=14), we analyzed plants from 15 independent transgenic barley lines [6 for uidA and 9 for sgfp(S65T)] produced via microprojectile bombardment of immature embryos; 4 were diploid and 11 were tetraploid. The expression and inheritance of transgenes were determined by analysis of functional transgene expression, polymerase chain reaction and fluorescence in situ hybridization (FISH). Ability to express transgenes driven by either B(1)- or D-hordein promoter was inherited in T(4) and later generations: T(4) (2 lines), T(5) (8 lines), T(6) (3 lines), T(8) (1 line) and T(9) (1 line). Homozygous transgenic plants were obtained from 12 lines [5 for uidA and 7 for sgfp(S65T)]; the remaining lines are currently being analyzed. The application of the FISH technique for physical mapping of chromosomes was useful for early screening of homozygous plants by examining for presence of the transgene. For example, one line expressing uidA, and shown to have doublet fluorescence signals on a pair of homologous chromosomes was confirmed as a homozygous line by its segregation ratio; additionally this line showed stable inheritance of the transgene to T(9) progeny. The expression of transgenes in most lines (14 out of 15 lines) driven by hordein promoters was stably transmitted to T(4) or later generations, although there was a skewed segregation pattern (1:1) from the T(1) generation onward in the remaining line. In contrast, transgene silencing or transgene loss under the control of the maize ubiquitin promoter was observed in progeny of only 6 out of 15 lines.  相似文献   

12.
To develop a less genotype-dependent maize-transformation procedure, we used 10-month-old Type I callus as target tissue for microprojectile bombardment. Twelve transgenic callus lines were obtained from two of the three anther-culture-derived callus cultures representing different gentic backgrounds. Multiple fertile transgenic plants (T0) were regenerated from each transgenic callus line. Transgenic leaves treated with the herbicide Basta showed no symptoms, indicating that one of the two introduced genes, bar, was functionally expressing. Data from DNA hybridization analysis confirmed that the introduced genes (bar and uidA) were integrated into the plant genome and that all lines derived from independent transformation events. Transmission of the introduced genes and the functional expression of bar in T1 progeny was also confirmed. Germination of T1 immature embryos in the presence of bialaphos was used as a screen for functional expression of bar; however, leaf painting of T1 plants proved a more accurate predictor of bar expression in plants. This study suggests that maize Type I callus can be transformed efficiently through microprojectile bombardment and that fertile transgenic plants can be recovered. This system should facilitate the direct introduction of agronomically important genes in to commercial genotypes.  相似文献   

13.
14.
To evaluate and characterize the stability of traits transferred viaAgrobacterium transformation, foreign gene expression must be examined in sexually derived progeny. The objective of this study was to analyze three transgenic peanut plants, 1-10, 12-1, and 17-1, for the inheritance and expression of their foreign genes. Segregation ratios for the introduced genes in T2 plants gave either 100% or 3:1 expression of the -glucuronidase (GUS) gene, demonstrating recovery of both homozygous and heterozygous T1 plants. Fluorometric GUS assay in T1 and T2 generations of all three plants showed that the GUS gene was stably expressed in the progeny. DNA analyses showed 100% concordance between the presence of the foreign gene and enzyme activity. Our results demonstrate that transgenes in peanut introduced byAgrobacterium can be inherited in a Mendelian manner.Abbreviations GUS -Glucuronidase - MS Murashige and Skoog - MU 4-Methylumbelliferone - NPTII Neomycin phosphotransferase II  相似文献   

15.
Variation in the inheritance of expression among subclones for an unselected (uidA) and a selected (bar) transgene was analyzed in two individual transformation events in maize. The unselectable gene (uidA) and the selectable gene (bar), on two separate plasmids, were transferred to maize (Hi-II derivative) by particle bombardment of embryogenic calli or suspension cells. A total of 188 fertile T1 plants were obtained from one transformant (transformation event BG which integrated uidA and bar). A total of 98 fertile T1 plants were obtained from a second transformant (transformation event B which integrated bar). Through self-pollination and/or cross-pollination in the greenhouse, approximately 10 000 T2 progeny were obtained from event BG, and more than 1000 T2 progeny were obtained from event B. Segregation of transgene expression was analyzed statistically in a total of 2350 T2 progeny from 40 T1 subclones of event BG and in 217 T2 progeny from six T1 subclones from event B. Variation in the inheritance of expression among subclones for the two transgenes (uidA and bar) was observed in the two transformants. A significant difference was observed between the use of the female or male as the transgenic parent in the inheritance of expression for the two transgenes in event BG. No inheritance through the pollen was observed in two of four T1 subclones analyzed in event B. Co-expression analysis of event BG showed that both transgenes were co-expressed in 67.7% of the T2 plants which expressed at least one of the two transgenes. Of the T2 expressing plants, 30.4% expressed only bar, and 1.9% expressed only uidA. Inactivation of the unselected (uidA) and the selected (bar) transgenes was observed in individual T2 plants.  相似文献   

16.
17.
Barley, an important member of the cereals, has been successfully transformed through various methods such as particle bombardment, Agrobacterium tumefaciens, DNA uptake, and electroporation. Initially, the transformation in barley concentrated on developing protocols using marker genes such as gus, bar, and hpt. Immature embryos and callus derived from immature embryos were targeted for transformation. Subsequently, genes of agronomic and malting importance have been deployed in barley. Particle bombardment appears to be the preferred choice for barley transformation in the majority of the reports, although Agrobacterium-mediated transformation is being used more often. The current review focuses on the challenges encountered in barley transformation such as somaclonal variation, development of transformation systems for commercial cultivars, gene expression, stability and inheritance, and gene flow. Newer markers such as the green fluorescent protein (gfp), firefly luciferase, and phosphomannose isomerase were found to be useful in the selection of transgenic plants. Tissue-specific promoters such as those for B1-hordein and D-hordein genes, and spike-specific promoters, are increasingly used to drive gene expression. The review also describes recent research on gene-tagging through transformation, insertion of disease resistance, and abiotic stress resistance genes, transformation with genes for improved malting quality, nutrient content, feed quality, and the production of feed enzymes and pharmaceutical compounds.  相似文献   

18.
Summary A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.  相似文献   

19.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号