首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

2.
Current models of X-linked and autosomal evolutionary rates often assume that the effective population size of the X chromosome ( NeX ) is equal to three-quarters of the autosomal population size ( NeA ). However, polymorphism studies of Drosophila melanogaster and D. simulans suggest that there are often significant deviations from this value. We have computed fixation rates of beneficial and deleterious mutations at X - linked and autosomal sites when this occurs. We find that NeX/NeA is a crucial parameter for the rates of evolution of X-linked sites compared to autosomal sites. Faster-X evolution due to the fixation of beneficial mutations can occur under a much wider range of levels of dominance when NeX/NeA > 3/4. We also examined various parameters that are known to influence the rates of evolution at X-linked and autosomal sites, such as different mutation rates in males and females and mutations that are sexually antagonistic, to determine which cases can lead to faster-X evolution. We show that, when the rate of nonsynonymous evolution is normalized by the rate of neutral evolution, a sex difference in mutation rate has no influence on the conditions for faster-X evolution.  相似文献   

3.
The evolution of F1 postzygotic incompatibilities in birds   总被引:1,自引:1,他引:0  
Abstract.— We analyzed the rate at which postzygotic incompatibilities accumulate in birds. Our purposes were to assess the role of intrinsic F1 hybrid infertility and inviability in the speciation process, and to compare rates of loss of fertility and viability between the sexes. Among our sample more than half the crosses between species in the same genus produce fertile hybrids. Complete loss of F1 hybrid fertility takes on the order of millions of years. Loss of F1 hybrid viability occurs over longer timescales than fertility: some viable hybrids have been produced between taxa that appear to have been separated for more than 55 my. There is strong support for Haldane's rule, with very few examples where the male has lower fitness than the female. However, in contrast to Drosophila , fertility of the homogametic sex in the F1 appears to be lost before viability of the heterogametic sex in the F1. We conclude that the time span of loss of intrinsic hybrid fertility and viability is often, but not always, longer than the time to speciation. Premating isolation is an important mechanism maintaining reproductive isolation in birds. In addition, other factors causing postzygotic reproductive isolation such as ecological causes of hybrid unfitness, reduced mating success of hybrids, and genetic incompatibilities in the F2s and backcrosses may often be involved in the speciation process.  相似文献   

4.
Chang AS  Bennett SM  Noor MA 《PloS one》2010,5(10):e15377
The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.  相似文献   

5.
White MA  Steffy B  Wiltshire T  Payseur BA 《Genetics》2011,189(1):289-304
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.  相似文献   

6.
A new chemical indicator for monitoring steam sterilization processes has been calibrated in F 0 units. The effective temperature range for F 0 measurements using this device has been shown to lay between 115 and 123°C. The effective F 0 range of the device has been shown to be 4–23 F 0 units. Using the device, measurements can be made within 0.5 units of conventionally calculated F 0 values.  相似文献   

7.
Sex-linked hybrid sterility in a butterfly   总被引:4,自引:0,他引:4  
Recent studies, primarily in Drosophila, have greatly advanced our understanding of Haldane's rule, the tendency for hybrid sterility or inviability to affect primarily the heterogametic sex (Haldane 1922). Although dominance theory (Turelli and Orr 1995) has been proposed as a general explanation of Haldane's rule, this remains to be tested in female-heterogametic taxa, such as the Lepidoptera. Here we describe a novel example of Haldane's rule in Heliconius melpomene (Lepidoptera; Nymphalidae). Female F1 offspring are sterile when a male from French Guiana is crossed to a female from Panama, but fertile in the reciprocal cross. Male F1s are fertile in both directions. Similar female F1 sterility occurs in crosses between French Guiana and eastern Colombian populations. Backcrosses and linkage analysis show that sterility results from an interaction between gene(s) on the Z chromosome of the Guiana race with autosomal factors in the Panama genome. Large X (or Z) effects are commonly observed in Drosophila, but to our knowledge have not been previously demonstrated for hybrid sterility in Lepidoptera. Differences in the abundance of male versus female or Z-linked versus autosomal sterility factors cannot be ruled out in our crosses as causes of Haldane's rule. Nonetheless, the demonstration that recessive Z-linked loci cause hybrid sterility in a female heterogametic species supports the contention that dominance theory provides a general explanation of Haldane's rule (Turelli and Orr 2000).  相似文献   

8.
9.
Population differentiation in an annual legume: genetic architecture   总被引:10,自引:0,他引:10  
Abstract. The presence or absence of epistasis, or gene interaction, is explicitly assumed in many evolutionary models. Although many empirical studies have documented a role of epistasis in population divergence under laboratory conditions, there have been very few attempts at quantifying epistasis in the native environment where natural selection is expected to act. In addition, we have little understanding of the frequency with which epistasis contributes to the evolution of natural populations. In this study we used a quantitative genetic design to quantify the contribution of epistasis to population divergence for fitness components of a native annual legume, Chamaecrista fasciculata . The design incorporated the contrast of performance of F2 and F3 segregating progeny of 18 interpopulation crosses with the F1 and their parents. Crosses were conducted between populations from 100 m to 2000 km apart. All generations were grown for two seasons in the natural environment of one of the parents. The F1 often outperformed the parents. This F1 heterosis reveals population structure and suggests that drift is a major contributor to population differentiation. The F2 generation demonstrated that combining genes from different populations can sometimes have unexpected positive effects. However, the F3 performance indicated that combining genes from different populations decreased vigor beyond that due to the expected loss of heterozygosity. Combined with previous data, our results suggest that both selection and drift contribute to population differentiation that is based on epistatic genetic divergence. Because only the F3 consistently expressed hybrid breakdown, we conclude that the epistasis documented in our study reflects interactions among linked loci.  相似文献   

10.
Genetic linkage of six loci for polymorphic proteins in chickens ( Alb, Tf, Pa, Ov, G 3 and G 2) and three loci for somatic markers ( W/w , P/p and I/i ) was investigated. The existence of close linkage was proved between Ov and G3. No sign of linkage was detected between the other loci.  相似文献   

11.
The genetic basis of Haldane's rule was investigated through estimating the accumulation of hybrid incompatibilities between Drosophila simulans and D. mauritiana by means of introgression. The accumulation of hybrid male sterility (HMS) is at least 10 times greater than that of hybrid female sterility (HFS) or hybrid lethality (HL). The degree of dominance for HMS and HL in a pure D. simulans background is estimated as 0.23-0.29 and 0.33-0.39, respectively; that for HL in an F1 background is unlikely to be very small. Evidence obtained here was used to test the Turelli-Orr model of Haldane's rule. Composite causes, especially, faster-male evolution and recessive hybrid incompatibilities, underlie Haldane's rule in heterogametic male taxa such as Drosophila (XY male and XX female). However, if faster-male evolution is driven by sexual selection, it contradicts Haldane's rule for sterility in heterogametic-female taxa such as Lepidoptera (ZW female and ZZ male). The hypothesis of a faster-heterogametic-sex evolution seems to fit the current data best. This hypothesis states that gametogenesis in the heterogametic sex, instead of in males per se, evolves much faster than in the homogametic sex, in part because of sex-ratio selection. This hypothesis not only explains Haldane's rule in a simple way, but also suggests that genomic conflicts play a major role in evolution and speciation.  相似文献   

12.
Kinetic fluorescence imaging was used to set a new detection limit for plant exposure to low levels of destruxins – phytotoxins of Alternaria brassicae . A general experimental algorithm is presented that can be used to identify the combination of fluorescence parameters providing the highest contrast between the affected and unaffected plants or plant segments. Leaves of canola ( Brassica napus ) and white mustard ( Sinapis alba ) were exposed to various concentrations of destruxins and images of key fluorescence signals ( F 0, F M, F P, and of F S) were captured in a single kinetic experiment. Contrast was quantified within these images between the leaf areas exposed to destruxins and the untreated areas. The highest contrast was found in the image constructed by pixel-to-pixel division of images F 0 by F P and F 0 by F M. Using the F 0/ F M ratio image, we were able to detect exposure to destruxin concentration as low as approximately 0.05 mg l−1 applied to canola leaf and approximately 10 mg l−1 when applied to mustard. The detection limits were significantly lower than those obtained by optical microscopy indicating that kinetic chlorophyll fluorescence imaging can be used as a diagnostic tool in screening for varieties with an enhanced resistance to destruxins of Alternaria brassicae .  相似文献   

13.
Tao Y  Zeng ZB  Li J  Hartl DL  Laurie CC 《Genetics》2003,164(4):1399-1418
Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.  相似文献   

14.
Hybrid incompatibilities, measured as mortality and sterility, are caused by the disruption of gene interactions. They are important post-zygotic isolation barriers to species hybridization, and much effort is put into the discovery of the genes underlying these incompatibilities. In hybridization studies of the haplodiploid parasitic wasp genus Nasonia, genic incompatibilities have been shown to affect mortality and sterility. The genomic regions associated with mortality have been found to depend on the cytotype of the hybrids and thus suggest cytonuclear incompatibilities. As environmental conditions can affect gene expression and gene interaction, we here investigate the effect of developmental temperature on sterility and mortality in Nasonia hybrids. Results show that extreme temperatures strongly affect both hybrid sterility (mainly spermatogenic failure) and mortality. Molecular mapping revealed that extreme temperatures increase transmission ratio distortion of parental alleles at incompatible loci, and thus, cryptic incompatible loci surface under temperature stress that remain undiscovered under standard temperatures. Our results underline the sensitivity of hybrid incompatibilities to environmental factors and the effects of unstable epistasis.  相似文献   

15.
Campbell P  Good JM  Dean MD  Tucker PK  Nachman MW 《Genetics》2012,191(4):1271-1281
Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F(1) male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F(1) autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F(1) males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F(1) male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.  相似文献   

16.
Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule—the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect—substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60%) whereas few autosomal introgressions do (18%). Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility.  相似文献   

17.
Turelli M  Moyle LC 《Genetics》2007,176(2):1059-1088
Asymmetric postmating isolation, where reciprocal interspecific crosses produce different levels of fertilization success or hybrid sterility/inviability, is very common. Darwin emphasized its pervasiveness in plants, but it occurs in all taxa assayed. This asymmetry often results from Dobzhansky-Muller incompatibilities (DMIs) involving uniparentally inherited genetic factors (e.g., gametophyte-sporophyte interactions in plants or cytoplasmic-nuclear interactions). Typically, unidirectional (U) DMIs act simultaneously with bidirectional (B) DMIs between autosomal loci that affect reciprocal crosses equally. We model both classes of two-locus DMIs to make quantitative and qualitative predictions concerning patterns of isolation asymmetry in parental species crosses and in the hybrid F(1) generation. First, we find conditions that produce expected differences. Second, we present a stochastic analysis of DMI accumulation to predict probable levels of asymmetry as divergence time increases. We find that systematic interspecific differences in relative rates of evolution for autosomal vs. nonautosomal loci can lead to different expected F(1) fitnesses from reciprocal crosses, but asymmetries are more simply explained by stochastic differences in the accumulation of U DMIs. The magnitude of asymmetry depends primarily on the cumulative effects of U vs. B DMIs (which depend on heterozygous effects of DMIs), the average number of DMIs required to produce complete reproductive isolation (more asymmetry occurs when fewer DMIs are required), and the shape of the function describing how fitness declines as DMIs accumulate. Comparing our predictions to data from diverse taxa indicates that unidirectional DMIs, specifically involving sex chromosomes, cytoplasmic elements, and maternal effects, are likely to play an important role in postmating isolation.  相似文献   

18.
Supernatant malate dehydrogenase (MDH) isozymes (as visualized by starch gel electrophoresis) are encoded by two distinct gene loci in both the largemouth and smallmouth bass. When an interspecific F1 hybrid is formed between these two fish, a unique MDH isozyme is generated. The results of freeze-thaw molecular hybridization (which is the first application of this technique to MDH) indicate that this unique isozyme in the F1 hybrid is a heterodimer composed of one subunit of each parental type. The F1 hybrids produced F2 hybrids which in turn formed the F3 hybrid population. The inheritance of alleles at the MDH-B locus is consistent with a single Mendelian autosomal locus. Furthermore, there is no evidence of linkage between the lactate dehydrogenase-E locus and the MDH-B locus.  相似文献   

19.
The occurrence of hybrid incompatibilities forms an important stage during the evolution of reproductive isolation. In early stages of speciation, males and females often respond differently to hybridization. Haldane's rule states that the heterogametic sex suffers more from hybridization than the homogametic sex. Although haplodiploid reproduction (haploid males, diploid females) does not involve sex chromosomes, sex-specific incompatibilities are predicted to be prevalent in haplodiploid species. Here, we evaluate the effect of sex/ploidy level on hybrid incompatibilities and locate genomic regions that cause increased mortality rates in hybrid males of the haplodiploid wasps Nasonia vitripennis and Nasonia longicornis. Our data show that diploid F(1) hybrid females suffer less from hybridization than haploid F(2) hybrid males. The latter not only suffer from an increased mortality rate, but also from behavioural and spermatogenic sterility. Genetic mapping in recombinant F(2) male hybrids revealed that the observed hybrid mortality is most likely due to a disruption of cytonuclear interactions. As these sex-specific hybrid incompatibilities follow predictions based on Haldane's rule, our data accentuate the need to broaden the view of Haldane's rule to include species with haplodiploid sex determination, consistent with Haldane's original definition.  相似文献   

20.
Otoliths ( n = 847) and gonads ( n = 817) were collected from barrelfish Hyperoglyphe perciformis that were captured by commercial fishermen in the waters off South Carolina and Georgia in 1995, 1997 and 2001–2006. Of the otoliths collected, 97% were aged successfully, and specimens sampled ranged from 5 to 85 years, with a median age of 12 years. The von Bertalanffy growth parameters yielded the equation: Lt = 857·8{1 − e−0·0985[ t −(−8·95)]}, where Lt is fork length ( L F) at time t . Through histological examination, 94% of the gonads assessed were assigned to a sex and reproductive class. Females spawned from September to May with a peak from November to January. Males spawned year round, but had a peak from September to April. The sex ratio (M:F) for this population was 1:1·34. The smallest mature female was 605 mm L F and the youngest immature female was 697 mm L F. Estimates of L F and age at 50% maturity ( L 50 and A 50) for females were 660 mm L F (95% CI = 633–667 mm L F) and 6·08 years (95% CI = 3·50–7·27 years), respectively. The youngest mature male was 575 mm L F and the oldest immature male was 762 mm L F, and no estimates of L 50 or A 50 were made for males. It was determined that barrelfish exhibit the typical characteristics of long life span, slow growth and high age at maturity seen in other deepwater fishes, and that care should be taken to manage this species accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号