首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
云南野生稻籽粒淀粉合成关键酶活性测定   总被引:4,自引:0,他引:4  
为研究云南3种野生稻直链淀粉合成机制并利用其直链淀粉含量较低的优良品质,以云南3种野生稻和4种当地栽培稻为材料,研究野生稻灌浆期籽粒4种淀粉合成关键酶(包括ADPG焦磷酸化酶、可溶性淀粉合成、颗粒凝结型淀粉合成酶、淀粉分支酶)活性变化。结果表明,野生稻中4种淀粉合成酶的变化趋势与栽培稻相似,但活性有较大差别。颗粒凝结型淀粉合成酶的活性与直链淀粉含量呈正相关,说明在野生稻中同样是由颗粒凝结型淀粉合成酶控制直链淀粉的合成。同时发现在同一灌浆期,同种材料中可溶性淀粉合成酶和淀粉分支酶的活性变化呈相反趋势,推测这两种酶之间可能在淀粉合成过程中存在某种反馈调节机制。  相似文献   

2.
Sun MM  Abdula SE  Lee HJ  Cho YC  Han LZ  Koh HJ  Cho YG 《PloS one》2011,6(4):e18385
The composition of amylopectin is the determinant of rice eating quality under certain threshold of protein content and the ratio of amylose and amylopectin. In molecular biology level, the fine structure of amylopectin is determined by relative activities of starch branching enzyme (SBE), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS) in rice grain under the same ADP-Glucose level. But the underlying mechanism of eating quality in molecular biology level remains unclear. This paper reports the differences on major parameters such as SNP and insertion-deletion sites, RNA expressions, and enzyme activities associated with eating quality of japonica varieties. Eight japonica rice varieties with significant differences in various eating quality parameters such as palatability and protein content were used in this experiment. Association analysis between nucleotide polymorphism and eating quality showed that S12 and S13 loci in SBE1, S55 in SSS1, S58 in SSS2A were significantly associated with apparent amylose content, alkali digestion value, setback viscosity, consistency viscosity, pasting temperature, which explained most of the variation in apparent amylose content, setback viscosity, and consistency viscosity; and explained almost all variations in alkali digestion value and pasting temperature. Thirty-five SNPs and insertion-deletions from SBE1, SBE3, GBSS1, SSS1, and SSS2A differentiated high or intermediate palatability rice varieties from low palatability rice varieties. Correlation analysis between enzyme activities and eating quality properties revealed that SBE25 and SSS15/W15 were positively correlated with palatability, whereas GBSS10 and GBSS15 were negatively correlated. Gene expressions showed that SBE1 and SBE3 expressions in high palatability varieties tended to be higher than middle and low palatability varieties. Collectively, SBE1, SBE3, SSS1, and SSS2A, especially SBE1 and SBE3 could improve eating quality, but GBSS1 decreased eating quality. The results indicated the possibility of developing high palatability cultivars through modification of key genes related to japonica rice eating quality formation in starch biosynthesis.  相似文献   

3.
Amylose and amylopectin are determinants of the physicochemical properties for starch and grain quality in rice. Their biosynthesis is catalyzed by the interplay of ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), a starch branching enzyme (SBE), and a starch debranching enzyme (SDE). In this study, the genes for these enzymes were highly expressed 7 to 28 days after flowering during grain development, and their expression closely matched increases in both starch content and grain weight Among all the tested cultivars, amylose contents in the rice grains remained essentially constant throughout their development The AGPase gene was highly expressed in the high-yield cultivars of both glutinous and non-glutinous rice. The SSS gene was actively expressed when mature GBSS mRNA decreased. Genes responsible for amylopectin biosynthesis were simultaneously expressed in the late stage of grain development. We have now demonstrated that the expression patterns of starch biosynthetic genes differ between glutinous and non-glutinous rice, and between Tongil (a Japonica/ Indica hybrid) and Japonica types.  相似文献   

4.
The effects of temperature on starch and amylose accumulation, fine structure of amylopectin and activities of some enzymes related to starch synthesis in developing rice endosperms was examined. Two early indica rice varieties were used, differing in amylose concentration (AC, %), namely Jia 935 (low AC) and Jia 353 (high AC). The results showed that the effects of high temperature on AC and amylopectin fine structure were variety-dependent. High temperature caused a reduction in amylose concentration and an increase in the short chain (CL<22) proportion of amylopectin for Jia 935; while opposite was true for Jia 353. High temperature also reduced and increased the activity of granule-bound starch synthase (GBSS) in Jia 935 and in Jia 353, respectively. This suggests that a change in the ratio of amylose/starch due to temperature was attributable to a change in GBSS activity. Moreover, obvious differences between the two rice varieties were detected in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (ADPG-Ppase), soluble starch synthase (SSS), starch branching enzyme (SBE), starch de-branching enzyme (SDBE) and starch phosphorylase (SPase) to high temperature. Accumulation rate of amylose was significantly and positively correlated with GBSS for Jia 935, but not for Jia 353. Amylose accumulation was also significantly and positively correlated with the activities of SDBE, SBE, ADPG-Ppase and SuSy for both varieties. The results suggest that the ratio of amylose to starch in rice endosperm is not only related to GBSS, but also affected by the activities of SDBE, SBE, ADPG-Ppase and SuSy.  相似文献   

5.
The Waxy (Wx) gene encodes a granule-bound starch synthase (GBSS) that plays a key role in the amylose synthesis of rice and other plant species. Two functional Wx alleles of rice exist: Wx(a), which produces a large amount of amylose, and Wx(b), which produces a smaller amount of amylose because of the mutation at the 5' splice site of intron 1. Wx(b) is largely distributed in Japonica cultivars, and high amylose cultivars do not exist in Japonica cultivars. We introduced the cloned Wx(a) cDNA into null-mutant Japonica rice (wx). The amylose contents of these transgenic plants were 6-11% higher than that of the original cultivar, Labelle, which carries the Wx(a) allele, although the levels of the Wx protein in the transgenic rice were equal to those of cv. Labelle. We also observed a gene-dosage effect of the Wx(a) transgene on Wx protein expression, but a smaller dosage effect was observed in amylose production with over 40% of amylose content in transgenic rice. Moreover, one transgenic line carrying eleven copies of the transgene showed low levels of Wx expression and amylose in the endosperm. This suggested that the integration of excessive copies of the transgene might lead to gene silencing.  相似文献   

6.
The synthesis of amylose in amyloplasts is catalyzed by granule-bound starch synthase (GBSS). GBSS gene expression was inhibited via antisense RNA in Agrobacterium rhizogenes-transformed potato plants. Analysis of starch production and starch granule composition in transgenic tubers revealed that reduction of GBSS activity always resulted in a reduction of the production of amylose. Field experiments, performed over a 2-year period, showed that stable inhibition of GBSS gene expression can be obtained. Microscopic evaluation of iodine-stained starch granules was shown to be a sensitive system for qualitative and quantitative examination of amylose formation in starch granules of transgenic potato tubers. In plants showing inhibition of GBSS gene expression, the reduced amylose content in tuber starch was not a consequence of a lower amylose content throughout the entire starch granule. Starch granules of transgenic tubers were found to contain amylose at a percentage similar to wild-type starch in a core of varying size at the hilum of each granule. This indicated that reduced GBSS gene expression results in amylose formation in a restricted zone of the granules. The size of this zone is suggested to be dependent on the GBSS protein level. During development of the granules, the available GBSS protein is thought to become limiting, resulting in the formation of starch that lacks amylose. RNA gel blot analysis of tuber tissue showed that inhibition of GBSS gene expression resulted in a reduced GBSS mRNA level but did not affect the expression level of other starch synthesizing enzymes. Antisense RNA could only be detected in leaf tissue of the transgenic plants.  相似文献   

7.
The percentage of amylose in the endosperm of rice (Oryza sativa) largely determines grain cooking and eating qualities. Granule‐bound starch synthase I (GBSSI) and GBSSII are responsible for amylose biosynthesis in the endosperm and leaf, respectively. Here, we identified OsGBP, a rice GBSS‐binding protein that interacted with GBSSI and GBSSII in vitro and in vivo. The total starch and amylose contents in osgbp mutants were significantly lower than those of wild type in leaves and grains, resulting in reduced grain weight and quality. The carbohydrate‐binding module 48 (CBM48) domain present in the C‐terminus of OsGBP is crucial for OsGBP binding to starch. In the osgbp mutant, the extent of GBSSI and GBSSII binding to starch in the leaf and endosperm was significantly lower than wild type. Our data suggest that OsGBP plays an important role in leaf and endosperm starch biosynthesis by mediating the binding of GBSS proteins to developing starch granules. This elucidation of the function of OsGBP enhances our understanding of the molecular basis of starch biosynthesis in rice and contributes information that can be potentially used for the genetic improvement of yield and grain quality.  相似文献   

8.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

9.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

10.
 The Waxy gene (Wx) encodes the granule-bound starch synthase responsible for the synthesis of amylose in rice (Oryza sativa). Recently, a polymorphic microsatellite sequence closely linked to the Wx gene was reported. To determine whether polymorphism in this sequence correlates with variation in apparent amylose content, we tested an extended pedigree of 92 current and historically important long-, medium- and short-grain US rice cultivars representing the efforts of many breeders over more than 80 years. Seven Wx microsatellite alleles were identified which together explained 82.9% of the variation in apparent amylose content of the 89 non-glutinous rice cultivars tested. Similar results were also obtained with 101 progenyof a cross between low- and intermediate-amylose breeding lines. An additional, unique microsatelliteallele, (CT)16, was detected in one glutinous cultivar,CI 5309. However, the other glutinous cultivars,Calmochi 101 and Tatsumi mochi, were in the (CT)17 class along with three other cultivars that contained15–16.5% amylose. We sequenced a 200-bp PCR-amplified fragment containing the CT microsatellite and the putative 5′ splice site of the Wx leader intron from a subset of 42 cultivars representing all eight microsatellite alleles. All of the cultivars with 18% or less amylose had the sequence AGTTATA at the putative leader intron 5′ splice site, while all cultivars with a higher proportionof amylose had AGTTATA. This single nucleotidesubstitution could also be assayed by AccI digestion of the amplified fragment. Overall, this single nucleotide polymorphism could explain 79.7% of the variation in the apparent amylose content of the 89 non-glutinous cultivars tested. Interestingly, cultivars in the (CT)19 microsatellite classes that differed substantially in amylose content still showed the correlation between this G-T polymorphism and apparent amylose content. The G-T polymorphism at this site was not, however, able to explain the very low amylose contents of the three glutinous cultivars tested, all of which had the sequence AGTTATA. Received: 31 July 1996 / Accepted: 22 November 1996  相似文献   

11.
12.
Weight of individual grains is a major yield component in wheat. The non-uniform distribution of single grain weight on a wheat spike is assumed to be closely associated with starch synthesis in grains. The present study was undertaken to determine if the enzymes involved in starch synthesis cause the differences in single grain weight between superior and inferior grains on a wheat spike. Using two high-yield winter wheat (Triticum aestivum L.) varieties differing in grain weight and three nitrogen rates for one variety, the contents of amylose and amylopectin, and activities of enzymes involved in starch synthesis in both superior and inferior grains were investigated during the entire period of grain filling. Superior grains showed generally higher starch accumulation rates and activities of enzymes including SS (sucrose synthase), UDPGPPase (UDP-glucose pyrophosphorylase), ADPGPPase (ADP-glucose pyrophosphorylase), SSS (soluble starch synthase) and GBSS (starch granule bound starch synthase) and subsequently produced much higher single grain weight than inferior grains. Nitrogen increased enzyme activities and starch accumulation rates, and thus improved individual grain weight, especially for inferior grains. The SS, ADPGPPase and SSS were significantly correlated to amylopectin accumulation, while SS, ADPGPPase, SSS and GBSS were significantly correlated to amylose accumulation. This infers that SS, ADPGPPase and starch synthase play key roles in regulating starch accumulation and grain weight in superior and inferior grains on a wheat spike.  相似文献   

13.
The dynamic changes of the activities of enzymes involving in starch biosynthesis, including ADP-glucose pyrophosphorylase (AGPase), soluble starch synthases (SSS), starch branching enzyme (SBE) and starch debranching enzymes (DBE) were studied, and changes of fine structure of amy- lopectin were characterized by isoamylase treatment during rice grain development, using trans anti-waxy gene rice plants. The relationships between the activities of those key enzymes were also analyzed. The amylose synthesis was significantly inhibited in transgenic Wanjing 9522, but the total starch content and final grain weight were less affected as compared with those of non-transgenic Wanjing 9522 rice cultivar. Analyses on the changes of activities of enzymes involving in starch bio- synthesis showed that different enzyme activities were expressed differently during rice endosperm development. Soluble starch synthase is relatively highly expressed in earlier stage of endosperm de- velopment, whilst maximal expression of granule-bound starch synthase (GBSS) occurred in mid-stage of endosperm development. No obvious differences in changes of the activities of AGPase and SBE between two rice cultivars investigated, except the DBEs. Distribution patterns of branches of amy- lopectin changed continually during the development of rice grains and varied between two rice culti- vars. It was suggested that amylopectin synthesis be prior to the synthesis of amylose and different enzymes have different roles in controlling syntheses of branches of amylopectin.  相似文献   

14.
Summary Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granulebound starch synthase (GBSS) into the amylose-free starch mutantamf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates thatAmf is the structural gene for GBSS. Amylose was found in columella cells of root tips, in stomatal guard cells, tubers, and pollen, while in the control experiments using only vector DNA, these tissues remained amylose free. This confirms the fact that, in potato, GBSS is the only enzyme responsible for the presence of amylose, accumulating in all starch-containing tissues. Amylose-containing transformants showed no positive correlation between GBSS activity and amylose content, which confirms that the former is not the sole regulating factor in amylose metabolism.  相似文献   

15.
16.
将反义Wx基因转入水稻,导致Wx蛋白不同程度减少,颖果中的直链淀粉含量不同程度下降,总淀粉含量显著降低,直链淀粉与总淀粉的比值极显著降低。在水稻颖果发育过程中,ADPG-PPase、GBSS、SSS和SBE的活性在灌浆前期迅速升高,达最大值后很快下降,在灌浆中后期下降趋缓。Wx蛋白减少后的转基因水稻颖果中的GBSS活性明显下降,下降幅度与直链淀粉含量相一致,而且活性高峰期比其亲本有所提前。转基因水稻颖果中ADPG-PPase和SSS的活性在颖果发育的前中期,SBE则在中后期高于相应的亲本。  相似文献   

17.
The rice Waxy (Wx) gene encodes granule‐bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site‐directed mutated Wx gene constructs into the wx mutant glutinous rice. The eight amino acid residues are suspected to play roles in OsGBSS1 structure maintenance or function based on homologous enzyme sequence alignment and homology modelling. Both OsGBSS1 activity and amylose content were analysed in homozygous transgenic lines carrying the mutated OsGBSS1 (Wx) genes. Our results indicate that mutations at diverse sites in OsGBSS1 reduces its activity by affecting its starch‐binding capacity, its ADP‐glucose‐binding capability or its protein stability. Our results shed new light on the structural basis of OsGBSS1 activity and the mechanisms of OsGBSS1 activity on amylose synthesis in vivo. This study also demonstrates that it is feasible to finely modulate amylose content in rice grains by modifying the OsGBSS1 activity.  相似文献   

18.

Background

Native starch accumulates as granules containing two glucose polymers: amylose and amylopectin. Phosphate (0.2–0.5%) and proteins (0.1–0.7%) are also present in some starches. Phosphate groups play a major role in starch metabolism while granule-bound starch synthase 1 (GBSS1) which represents up to 95% of the proteins bound to the granule is responsible for amylose biosynthesis.

Methods

Synchrotron micro-X-ray fluorescence (μXRF) was used for the first time for high-resolution mapping of GBSS1 and phosphate groups based on the XRF signal of sulfur (S) and phosphorus (P), respectively. Wild-type starches were studied as well as their related mutants lacking GBSS1 or starch-phosphorylating enzyme.

Results

Wild-type potato and maize starch exhibited high level of phosphorylation and high content of sulfur respectively when compared to mutant potato starch lacking glucan water dikinase (GWD) and mutant maize starch lacking GBSS1. Phosphate groups are mostly present at the periphery of wild-type potato starch granules, and spread all over the granule in the amylose-free mutant. P and S XRF were also measured within single small starch granules from Arabidopsis or Chlamydomonas not exceeding 3–5 μm in diameter.

Conclusions

Imaging GBSS1 (by S mapping) in potato starch sections showed that the antisense technique suppresses the expression of GBSS1 during biosynthesis. P mapping confirmed that amylose is mostly present in the center of the granule, which had been suggested before.

General significance

μXRF is a potentially powerful technique to analyze the minor constituents of starch and understand starch structure/properties or biosynthesis by the use of selected genetic backgrounds.  相似文献   

19.
Genetic controls on starch amylose content in wheat and rice grains   总被引:3,自引:0,他引:3  
Starch accumulates in plants as granules in chloroplasts of source organs such as leaves (transitory starch) or in amyloplasts of sink organs such as seeds, tubers and roots (storage starch). Starch is composed of two types of glucose polymers: the essentially linear polymer amylose and highly branched amylopectin. The amylose content of wheat and rice seeds is an important quality trait, affecting the nutritional and sensory quality of two of the world’s most important crops. In this review, we focus on the relationship between amylose biosynthesis and the structure, physical behaviour and functionality of wheat and rice grains. We briefly describe the structure and composition of starch and then in more detail describe what is known about the mechanism of amylose synthesis and how the amount of amylose in starch might be controlled. This more specifically includes analysis of GBSS alleles, the relationship between waxy allelic forms and amylose, and related quantitative trait loci. Finally, different methods for increasing or lowering amylose content are evaluated.  相似文献   

20.
Three experiments of in vitro ear culture were conducted to evaluate how the substrates of C (carbon) and N (nitrogen) supply in liquid medium regulate the grain growth and synthesis of protein and starch in two winter wheat cultivars. Increasing glutamine supply with constant sucrose concentration increased the contents of total protein and protein components of albumin and globulin in grain, and the activity of glutamate pyruvate transaminase (GPT) across most treatments, while markedly reducing the contents of total starch and components of amylose and amylopectin as well as the activities of soluble starch synthase (SSS) and granule bounded starch synthase (GBSS). The opposite patterns were observed in the experiment of increasing sucrose supply at constant glutamine concentration. When simultaneously increasing sucrose and glutamine supply at constant ratio, the contents of total protein, albumin and globulin in grain were slowly enhanced, whereas the contents of total starch, amylose and amylopectin and the activities of SSS, GBSS and GPT increased only to a certain extent and then decreased. Negative correlations were found between the contents of protein or protein components in grains and the relative ratio of sucrose to glutamine concentrations in the culture medium, while positive correlations were seen between the contents of total starch or starch components and the ratio of sucrose to glutamine. These results implied that the composition of protein and starch in wheat grain could be readily manipulated by varying the concentrations of sucrose and glutamine and their ratio in the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号