首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.  相似文献   

3.
4.
目的探讨过量RA对金黄地鼠胚胎神经管RARα和RARβ mRNA表达的影响。方法采用原位杂交及图像分析,半定量分析正常及RA致畸金黄地鼠胚胎神经管中RARα和RARβ mRNA表达水平的变化。结果过量RA可使RARα和RARβ mRNA在金黄地鼠神经管中的表达水平呈现短时下降,随后又大幅上升的变化。结论过量RA引起的RARα和RARβ mRNA表达水平的变化与RA致金黄地鼠神经管畸形相关。  相似文献   

5.
Understanding the mechanisms of controlled expansion and differentiation of basal progenitor cell populations during organogenesis is essential for developing targeted regenerative therapies. Since the cytokeratin 5-positive (K5+) basal epithelial cell population in the salivary gland is regulated by retinoic acid signaling, we interrogated how isoform-specific retinoic acid receptor (RAR) signaling impacts the K5+ cell population during salivary gland organogenesis to identify RAR isoform-specific mechanisms that could be exploited in future regenerative therapies. In this study, we utilized RAR isoform-specific inhibitors and agonists with murine submandibular salivary gland organ explants. We determined that RARα and RARγ have opposing effects on K5+ cell cycle progression and cell distribution. RARα negatively regulates K5+ cells in both whole organ explants and in isolated epithelial rudiments. In contrast, RARγ is necessary but not sufficient to positively maintain K5+ cells, as agonism of RARγ alone failed to significantly expand the population. Although retinoids are known to stimulate differentiation, K5 levels were not inversely correlated with differentiated ductal cytokeratins. Instead, RARα agonism and RARγ inhibition, corresponding with reduced K5, resulted in premature lumenization, as marked by prominin-1. With lineage tracing, we demonstrated that K5+ cells have the capacity to become prominin-1+ cells. We conclude that RARα and RARγ reciprocally control K5+ progenitor cells endogenously in the developing submandibular salivary epithelium, in a cell cycle-dependent manner, controlling lumenization independently of keratinizing differentiation. Based on these data, isoform-specific targeting RARα may be more effective than pan-RAR inhibitors for regenerative therapies that seek to expand the K5+ progenitor cell pool. Summary statement: RARα and RARγ reciprocally control K5+ progenitor cell proliferation and distribution in the developing submandibular salivary epithelium in a cell cycle-dependent manner while regulating lumenization independently of keratinizing differentiation.  相似文献   

6.
7.
8.
Zheng B  Han M  Shu YN  Li YJ  Miao SB  Zhang XH  Shi HJ  Zhang T  Wen JK 《Cell research》2011,21(10):1487-1508
Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension, atherosclerosis and restenosis after angioplasty, leading to pathophysiological vascular remodeling. As an important growth arrest gene, p21 plays critical roles in vascular remodeling. Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling. Nevertheless, the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood. Here, we show that, under basal conditions, RARα forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (Klf5) at the p21 promoter to inhibit its expression. Upon RARα agonist stimulation, HDAC2 is phosphorylated by CK2α. Phosphorylation of HDAC2, on the one hand, promotes its dissociation from RARα, thus allowing the liganded-RARα to interact with co-activators; on the other hand, it increases its interaction with Klf5, thus leading to deacetylation of Klf5. Deacetylation of Klf5 facilitates its dissociation from the p21 promoter, relieving its repressive effect on the p21 promoter. Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of Klf5 from the p21 promoter and impairs RAR agonist-induced p21 activation. Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonist treatment, allowing for optimum agonist-induced p21 expression.  相似文献   

9.
In this study, a novel DNA electrochemical probe (locked nucleic acid, LNA) was designed and involved in constructing an electrochemical DNA biosensor for detection of promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα) fusion gene in acute promyelocytic leukemia for the first time. This biosensor was based on a 'sandwich' sensing mode, which involved a pair of LNA probes (capture probe immobilized at electrode surface and biotinyl reporter probe as an affinity tag for streptavidin-horseradish peroxidase (streptavidin-HRP). Since biotin can be connected with streptavidin-HRP, this biosensor offered an enzymatically amplified electrochemical current signal for the detection of target DNA. In the simple hybridization system, DNA fragment with its complementary DNA fragment was evidenced by amperometric detection, with a detection limit of 74 fM and a linear response range of 0.1-10 pM for synthetic PML/RARα fusion gene in acute promyelocytic leukemia (APL). Otherwise, the biosensor showed an excellent specificity to distinguish the complementary sequence and different mismatch sequences. The new pattern also exhibited high sensitivity and selectivity in mixed hybridization system.  相似文献   

10.
11.
12.
13.
Recent data has implicated the Ski protein as being a physiologically relevant negative regulator of signaling by retinoic acid (RA). The mechanism by which Ski represses RA signaling is unknown. Co-immunoprecipitation and immunofluorescence assay showed that Ski and RARα are in the same complex in both the absence and presence of RA, which makes Ski different from other corepressors. We determined that Ski can stabilize RARα and HDAC3. These results suggest that Ski represses RA signaling by stabilizing corepressor complex.  相似文献   

14.
《FEBS letters》2014,588(24):4645-4653
  相似文献   

15.
16.
17.
All-trans retinoic acid (ATRA), a pan-retinoic acid receptor (RAR) agonist, is, along with other retinoids, a promising therapeutic agent for the treatment of a variety of solid tumors. On the one hand, preclinical studies have shown promising anticancer effects of ATRA in breast cancer; on the other hand, resistances occurred. Autophagy is a cellular recycling process that allows the degradation of bulk cellular contents. Tumor cells may take advantage of autophagy to cope with stress caused by anticancer drugs. We therefore wondered if autophagy is activated by ATRA in mammary tumor cells and if modulation of autophagy might be a potential novel treatment strategy. Indeed, ATRA induces autophagic flux in ATRA-sensitive but not in ATRA-resistant human breast cancer cells. Moreover, using different RAR agonists as well as RARα-knockdown breast cancer cells, we demonstrate that autophagy is dependent on RARα activation. Interestingly, inhibition of autophagy in breast cancer cells by either genetic or pharmacological approaches resulted in significantly increased apoptosis under ATRA treatment and attenuated epithelial differentiation. In summary, our findings demonstrate that ATRA-induced autophagy is mediated by RARα in breast cancer cells. Furthermore, inhibition of autophagy results in enhanced apoptosis. This points to a potential novel treatment strategy for a selected group of breast cancer patients where ATRA and autophagy inhibitors are applied simultaneously.Macroautophagy (hereafter referred to as autophagy) is a conserved mechanism characterized by the formation of double-membrane structures. These so-called autophagosomes deliver cytoplasmic material to the lysosome for subsequent degradation.1 Basal autophagy requires tight regulation as alterations in autophagy have been associated with many pathological conditions, including cancer.2 In addition, autophagy has been linked to fundamental processes such as development and cellular differentiation. In these processes, autophagy contributes to cell remodeling as observed during erythrocyte, lymphocyte or adipocyte differentiation.3 In the context of cancer and cancer therapy, autophagy is a double-edged sword. Owing to its homeostatic role in the removal of potentially harmful damaged organelles and protein aggregates, it is suggested to be tumor suppressive under normal conditions.4 In cancer cells, however, autophagy can be oncogenic, enabling survival under stressful conditions.5 Hence, the role of autophagy in tumorigenesis is clearly dependent on the cellular context and the tumor stage. In some cases, therapeutic agents induce an autophagic response that can promote resistance to treatment. In other cases, autophagy contributes to the action of antitumor agents.6 Therefore, knowledge about the action exerted by autophagy in response to anticancer treatments is a prerequisite for the identification of patients benefiting from therapeutic strategies based on autophagy modulators.All-trans retinoic acid (ATRA), the active metabolite of vitamin A, exerts diverse functions in almost every cell and organ system. ATRA controls cell proliferation, differentiation as well as immune, and neuronal functions primarily via regulation of gene expression.7 Endogenous retinoid levels are altered in different diseases of the lung, kidney and central nervous system, and contribute to their pathophysiology.8 ATRA is successfully used in the treatment of acute promyelocytic leukemia (APL), where it induces granulocytic differentiation of the blast and subsequent cell death of the differentiated leukemic cells. Importantly, ATRA-induced differentiation of the APL cell line, NB4, involves induction of macroautophagy.9, 10, 11, 12 In addition to its cytodifferentiating capacity in APL, ATRA has been proposed as an antitumorigenic agent for other types of cancer. The antiproliferative, cytodifferentiating and proapoptotic effects of retinoids are predominantly mediated by the nuclear hormone retinoid acid receptors RARα, RARβ and RARγ.13, 14 In breast cancer, preclinical studies have shown that retinoids are promising therapeutic agents. However, the clinical trials conducted so far were somewhat disappointing, possibly as a consequence of the study designs.15 Breast cancer is a highly heterogeneous disease represented as a collection of diseases with distinct histopathological and molecular features. The most important clinical classification of this tumor is based on the determination of ER (estrogen receptor), PR (progesterone receptor) and HER2 (human epidermal growth factor receptor-2) receptors. ER-positive breast cancer patients are eligible for hormonal therapies, whereas HER2 oncogenic activity can be blocked using targeted therapies.16 Approximately 15–20% of breast carcinomas overexpress HER2, which is associated with poor prognosis.17 Owing to the development of resistance to current HER2-targeted treatments such as trastuzumab and lapatinib alternative therapeutic strategies are required.18, 19 ATRA was recently shown to exert strong antitumor activity in cell lines representing a subgroup of HER2-positive breast tumors characterized by coamplification of the ERBB2 and RARα genes.20 This antitumor activity is remarkably stimulated by simultaneous HER2 inhibition with lapatinib. In addition, autophagy is induced upon ATRA treatment of the APL-derived cell line NB49, 10, 11 and retinoids have clinical relevance in breast cancer. Thus, we investigated whether and how autophagy is induced in breast cancer cells. In addition, we evaluated whether autophagy modulation represents a potential therapeutic strategy for potentiating ATRA cytotoxicity in breast cancer cells.  相似文献   

18.
19.
20.
Retinoic acid receptors (RARs) α, β, and γ are members of the nuclear receptor superfamily. Compounds which bind to and activate the RARs are termed retinoids which regulate a wide variety of biological processes such as vertebrate embryonic morphogenesis and organogenesis, cell growth arrest, differentiation, and apoptosis, as well as their disorders. Although many synthetic selective RARα, RARβ, and RARγ agonists have been designed and prepared, these have generally been lipophilic acids without good drug-like properties and with low oral bioavailability. Recently this has been changing and drug design approaches to highly potent and selective RARα and RARβ agonists with low lipophilicity that are orally bioavailable and less toxic have been developed, that have a range of potential therapeutic uses. This review covers these new advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号