首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《Epigenetics》2013,8(4):390-399
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

2.
3.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of endothelial nitric-oxide synthase (eNOS) are not fully understood. In this study we investigated whether histone deacetylation was involved in repression of eNOS expression in non-endothelial cells. Induction of eNOS expression by histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate was observed in all four different types of non-endothelial cells examined. Chromatin immunoprecipitation assays showed that the induction of eNOS expression by TSA was accompanied by a remarkable increase of acetylation of histone H3 associated with the eNOS 5'-flanking region in the non-endothelial cells. Moreover, DNA methylation-mediated repression of eNOS promoter activity was partially reversed by TSA treatment, and combined treatment of TSA and 5-aza-2'-deoxycytidine (AzadC) synergistically induced eNOS expression in non-endothelial cells. The proximal Sp1 site is critical for basal activity of eNOS promoter. The induction of eNOS by inhibition of HDACs in non-endothelial cells, however, appeared not mediated by the changes in Sp1 DNA binding activity. We further showed that Sp1 bound to the endogenous eNOS promoter and associated with HDAC1 in non-endothelial HeLa cells. Combined TSA and AzadC treatment increased Sp1 binding to the endogenous eNOS promoter but decreased the association between HDAC1 and Sp1 in HeLa cells. Our data suggest that HDAC1 plays a critical role in eNOS repression, and the proximal Sp1 site may serve a key target for HDCA1-mediated eNOS repression in non-endothelial cells.  相似文献   

4.
5.
Deleted in liver cancer (DLC1), a tumor suppressor gene in multiple cancers, is recurrently down regulated or inactivated by epigenetic mechanisms in primary prostate carcinomas (PCAs). In this study the methylation and acetylation profile of the DLC1 promoter region was examined in three PCA cell lines with low or undetectable DLC1 expression: LNCaP, its derivative C4-2B-2, and 22Rv1. Two histone deacetylase inhibitors (HDAC), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) induced histone acetylation of the DLC1 promoter in all three lines. DLC1 promoter methylation and deacetylation were detected in LNCaP and C4-2B-2 cells while in 22Rv1 cells DLC1 is silenced by deacetylation. Treatment with SAHA or TSA efficiently increased DLC1 expression in all lines, particularly in 22Rv1 cells, and activated the DLC1 promoter through the same Sp1 sites. The 22Rv1 cell line was selected to evaluate the efficacy of combined DLC1 transduction and SAHA treatment on tumor growth in athymic mice. Individually, DLC1 transduction and SAHA exposure reduced the tumor size by 75-80% compared to controls and in combination almost completely inhibited tumor growth. The antitumor effect was associated with the induction of apoptosis and inhibition of RhoA activity. SAHA alone significantly reduced RhoA activity, showing that this RhoGTPase is a target for SAHA. These results, obtained with a reliable preclinical in vivo test, predict that combined therapeutic agents targeting the pathways governing DLC1 function and HDAC inhibitors may be beneficial in management of prostate cancer.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
H-rev107 is downregulated in many carcinomas and tumor cell lines. Using postconfluent NIH3T3 cells, we demonstrated that growth arrest caused by contact inhibition, but not serum deprivation, increased H-rev107 expression. Furthermore, histone deacetylase inhibitors induced H-rev107 expression in NIH3T3 cells and allowed its reexpression in H-rev107-deficient WEHI 7.1 lymphoma cells. In contrast, no effect of the postconfluent stage or histone deacetylase inhibitors on H-rev107 levels was observed in tumorigenic H-rev107-expressing cell lines, HepG2, HeLa, and SKBR3. Transfections showed that TSA treatment increased luciferase activity 20-fold in NIH3T3 cells. We found that the GC-box at -83/-75 is a key element for H-rev107 induction by TSA and growth arrest, although there were no changes in the pattern and intensity of Sp1/Sp3-binding after induction. These data suggest that contact inhibition of growth and growth arrest caused by histone deacetylase inhibitors probably use the same mechanism to stimulate H-rev107 expression via histone acetylation in NIH3T3 cells and this might contribute to the development of drugs that can induce H-rev107 expression in certain tumors.  相似文献   

18.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of CTP:phosphocholine cytidylyltransferase alpha (CTalpha) are not fully understood. In this study, we investigated whether or not histone deacetylation is involved in repression of CTalpha expression in quiescent C3H10T1/2 mouse embryo fibroblasts. We have examined the contributions of the Sp1 and E2F binding sites in the repression of CTalpha gene expression. Immunoprecipitation experiments showed that histone deacetylase 1 (HDAC1) and HDAC activity are associated with Sp1 in serum-starved cells or during serum stimulation. However, HDAC1 association with E2F was only detected in serum-starved cells. By chromatin immunoprecipitation assays, we detected both direct and indirect association of HDAC1 with the CTalpha promoter. Treatment with the HDAC inhibitor trichostatin A induced CTalpha expression. Our data suggest that HDAC1 plays a critical role in CTalpha repression and that Sp1 and E2F may serve as key targets for HDAC1-mediated CTalpha repression in fibroblasts.  相似文献   

19.
20.
We previous reported that Sp1 recruits c-Jun to the promoter of the 12(S)-lipoxygenase gene in 12-myristate 13-acetate-treated cells. We now show that Sp1 that recruited HDAC1 to the Sp1/cJun complex was constitutively acetylated when cells were exposed to phorbol 12-myristate 13-acetate (PMA) (3 h). Prolonged stimulation of the cells with PMA (9 h), however, caused the dissociation of histone deacetylase 1 (HDAC1) and the deacetylation of Sp1, with the latter being able to recruit p300 that in turn caused the acetylation and dissociation of histone 3, thus enhancing the expression of 12(S)-lipoxygenase. We also overexpressed an Sp1 mutant (K703/A, lacking acetylation sites) in the cell and found that cells recruited more p300 and expressed more 12(S)-lipoxygenase. Taken together, our results indicated that Sp1 recruits HDAC1 together with c-Jun to the gene promoter, followed by deacetylation of Sp1 upon PMA treatment. p300 is then recruited to the gene promoter through the interaction with deacetylated Sp1 to acetylate histone 3, leading to the enhancement of the expression of 12(S)-lipoxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号