首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background, Aims and Scope Several authors have shown that spatially derived characterisation factors used in life cycle impact assessment (LCIA) can differ widely between different countries in the context of regional impact categories such as acidification or terrestrial eutrophication. Previous methodology studies in Europe have produced country-dependent characterisation factors for acidification and terrestrial eutrophication by using the results of the EMEP and RAINS models and critical loads for Europe. The unprotected ecosystem area (UA) is commonly used as a category indicator in the determination of characterisation factors in those studies. However, the UA indicator is only suitable for large emission changes and it does not result in environmental benefits in terms of characterisation factors if deposition after the emission reduction is still higher than the critical load. For this reason, there is a need to search for a new category indicator type for acidification and terrestrial eutrophying in order to calculate site-dependent characterisation factors. The aim of this study is to explore new site-dependent characterisation factors for European acidifying and eutrophying emissions based on accumulated exceedance (AE) as the category indicator, which integrates both the exceeded area and amount of exceedance. In addition, the results obtained for the AE and UA indicators are compared with each other. Methods The chosen category indicator, accumulated exceedance (AE), was computed according to the calculation methods developed in the work under the United Nations Economic Commission for Europe (UNECE) Convention on Long-range Transboundary Air Pollution (LRTAP). Sulphur and nitrogen depositions to 150x150 km2 grid cells over Europe were calculated by source-receptor matrices derived from the EMEP Lagrangian model of long-range transport of air pollution in Europe. Using the latest critical load data of Europe, the site-dependent characterisation factors for acidification and terrestrial eutrophication were calculated for 35 European countries and 5 sea areas for 2002 emissions and emissions predicted for 2010. In the determination of characterisation factors, the emissions of each country/area were reduced by various amounts in order to find stable characterisation factors. In addition, characterisation errors were calculated for the AE-based characterisation factors. For the comparison, the results based on the use of UA indicator were calculated by 10% and 50% reductions of emissions that corresponded to the common practice used in the previous studies. Results and Discussion The characterisation factors based on the AE indicator were shown to be largely independent of the reduction percentage used to calculate them.. Small changes in emissions (≤100 t) produced the most stable characterisation factors in the case of the AE indicator. The characterisation errors of those characterisation factors were practically zero. This means that the characterisation factors can describe the effects of small changes in national emissions that are mostly looked at in LCAs. The comparison between country-dependent characterisation factors calculated by the AE and UA indicators showed that these two approaches produce differences between characterisation factors for many countries/areas in Europe. The differences were mostly related to the Central and Northern European countries. They were greater for terrestrial eutrophication because the contribution of ammonia emission differ remarkably between the two approaches. The characterisation factors of the AE indicator calculated by the emissions of 2002 were greater than the factors calculated by the predicted emissions for 2010 in almost all countries/sea areas, due to the presumed decrease of acidifying and eutrophying emissions in Europe. Conclusions and Recommendations. In this study, accumulated exceedance was shown to be an appropriate category indicator in LCIA applications for the determination of site-dependent characterisation factors for acidification and terrestrial eutrophication in the context of integrated assessment modelling. In the future, it would be useful to calculate characterisation factors for emissions of separate parts of large countries and sea areas in Europe. In addition, it would also be useful to compare the approach based on the AE indicator with the method of the hazard index, as recommended in the latest CML guidebook.  相似文献   

2.
The term "critical load" means a quantitative estimate of an exposure to one or more pollutants below which significant harmful effects on specified sensitive elements of the environment do not occur, according to present knowledge. In the case of nitrogen, both oxidised and reduced compounds contribute to the total deposition of acidity, which exceeds critical loads in many forest ecosystems. These also cause negative effects through eutrophication. Critical loads of nitrogen were derived for forest soils (deciduous and coniferous forest), natural grassland, acid fens, heathland, and mesotrophic peat bogs. In Germany, a decrease in sulphur emissions over the past 15 years resulted in a reduced exceedance of critical loads for acid deposition. In the same period it was noted that reduction in the emissions of nitrogen oxides and ammonia remained insignificant. Therefore, emissions of nitrogen compounds have become relatively more important and will continue to threaten ecosystem function and stability. The risk of environmental damage remains at an unacceptable level. The German maps show the degree to which the critical loads are exceeded, and they present current developments and an expected future trend. Results indicate that recovery from pollutant stress occurs only gradually.  相似文献   

3.
Agriculture is an important source of ammonia (NH3), which contributes to acidification and eutrophication, as well as emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4). Controlling emissions of one of these pollutants through application of technical measures might have an impact (either beneficial or adverse) on emissions of the others. These side effects are usually ignored in policy making. This study analyses cost-effectiveness of measures to reduce acidification and eutrophication as well as agricultural emissions of N2O and CH4 in Europe, taking into account interrelations between abatement of NH3, N2O, and CH4 in agriculture. The model used is based on the RAINS (Regional Air pollution INformation and Simulation) model for air pollution in Europe, which includes emissions, abatement options, and atmospheric source-receptor relationships for pollutants contributing to acidification and eutrophication. We used an optimisation model that is largely based on the RAINS model but that also includes emissions of N2O and CH4 from agriculture and technical measures to reduce these emissions. For abatement options for agricultural emissions we estimated side effects on other emissions. The model determines abatement strategies to meet restrictions on emission and/or deposition levels at the least cost. Cost-effective strategies to reduce acidification and eutrophication in Europe were analysed. We found that NH3 abatement may cause an increase in N2O emissions. If total agricultural N2O and CH4 emissions in Europe were not allowed to increase, cost-effective allocation of emission reductions over countries in Europe changed considerably.  相似文献   

4.
The concept of critical load (CL) was defined to express the tolerance of natural and semi‐natural habitats for anthropogenic air pollution. Correct evaluation of the exceedance of critical loads is fundamental for the long‐term protection of ecosystems by limiting emissions of potential acidifying and eutrophying pollutants. For forest ecosystems, the exceedance of critical loads is often calculated using deposition data measured in the forest interior. However, several studies report forest edges acting as ‘hotspots’ of acidifying and nitrogen deposition, showing up to fourfold increases in atmospheric deposition compared to the forest interior. This paper estimates the relevance of considering the higher deposition load in forest edges for calculating exceedance of critical loads for nitrogen and potential acidifying deposition. If measures to control and reduce atmospheric deposition are based on mean deposition fluxes within forest stands, deposition reductions will not be enough for preventing adverse effects. In fact, emission reductions should be adjusted to deposition values at the forest edge, since these zones are most threatened. We thus conclude that there is an urgent need to reconsider the calculation of exceedance of critical loads, taking into account edge enhancement of deposition. This is an issue of high relevance, particularly in highly fragmented regions, such as Flanders (Belgium).  相似文献   

5.
Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long‐term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient‐poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient‐rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLempN). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat‐specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.  相似文献   

6.
This paper describes a new method to derive nitrogen critical loads for vegetation, and its application to The Netherlands. An ‘inverted’ form of the soil chemical model SMART2 was used to estimate atmospheric nitrogen deposition at the critical conditions for 139 terrestrial vegetation types (associations) occurring in northwestern Europe, using an iterative search procedure. The critical conditions are the lower end of the pH range, and the upper end of the nitrogen availability range for each vegetation type. The critical load is assumed to be the nitrogen deposition that results in the critical conditions. The critical load values were subjected to a sensitivity and uncertainty analysis. Sensitivity analysis showed that the estimated critical N load mainly depends on the vegetation type and to a lesser extent on the soil type and the critical N availability. Of these variables N availability, which was estimated from Ellenberg’s indicator scale, contributes most to the uncertainty. The critical load averaged over all vegetation types and soil types is estimated to be 23 ± 7 kg N ha−1y−1. This is a rather reliable value because its uncertainty is small and it is in agreement with empirical estimates of critical loads. Critical loads per vegetation type are less reliable because they are not correlated to empirical values, although the ranges of simulated and empirical values usually overlap. At the site level, uncertainty becomes very large and it is not possible to determine critical loads with any practical significance. The uncertainties can only be reduced if more data become available on the abiotic response per species under field conditions, at least to nitrogen availability and soil pH.  相似文献   

7.
Marine eutrophication refers to an ecosystem response to the loading of nutrients, typically nitrogen (N), to coastal waters where several impacts may occur. The increase of planktonic growth due to N-enrichment fuels the organic carbon cycles and may lead to excessive oxygen depletion in benthic waters. Such hypoxic conditions may cause severe effects on exposed ecological communities. The biologic processes that determine production, sink, and aerobic respiration of organic material, as a function of available N, are coupled with the sensitivity of demersal species to hypoxia to derive an indicator of the Ecosystem Response (ER) to N-uptake. The loss of species richness expressed by the ER is further modelled to a marine eutrophication Ecosystem Damage (meED) indicator, as an absolute metric of time integrated number of species disappeared (species yr), by applying a newly-proposed and spatially-explicit factor based on species density (SD). The meED indicator is calculated for 66 Large Marine Ecosystems and ranges from 1.6 × 10−12 species kgN−1 in the Central Arctic Ocean, to 4.8 × 10−8 species kgN−1 in the Northeast U.S. Continental Shelf. The spatially explicit SDs contribute to the environmental relevance of meED scores and to the harmonisation of marine eutrophication impacts with other ecosystem-damage Life Cycle Impact Assessment (LCIA) indicators. The novel features improve current methodologies and support the adoption of the meED indicator in LCIA for the characterization of anthropogenic-N emissions and thus contributing to the sustainability assessment of human activities.  相似文献   

8.
In a mosaic landscape in N‐Belgium (W‐Europe), consisting of forest, grassland, and wooded pasture on former agricultural land, we assessed nitrogen redistribution by free‐ranging cattle (±0.2 animal units ha?1 yr?1). We examined if the spatial redistribution of nitrogen among habitats by cattle could restore nutrient‐poor conditions in preferred foraging habitats, and conversely whether such translocation could lead to extreme eutrophication in preferred resting habitats. We used nitrogen content of different diet classes, habitat use, foraging and defecation behavior, weight gain, and nitrogen losses in the actual situation to explore four different habitat proportion scenarios and two different foraging strategies to calculate a net nitrogen balance per habitat. An atmospheric deposition of 30 kg N ha?1 yr?1 with varying interception factors according to the habitat types was included in an integrated nitrogen balance. All scenarios showed a net nitrogen transport from grassland and wooded pasture to forest habitat. We found that nitrogen redistribution strongly depends on habitat proportion. Nitrogen losses from preferred grassland habitat can be high, given its proportion is small. Depletion is only to be expected at excretion‐free areas and probably is of minor importance to trigger the establishment of woody species. In general, nitrogen transported by cattle was much lower than input by atmospheric deposition, but grazing can compensate for high N inputs in excretion‐free areas and maintain grassland types that support critical loads of 20–25 kg N ha?1 yr?1. In none of the scenarios, N transport by cattle resulted in the exceeding of critical nitrogen loads to vulnerable forest ground vegetation.  相似文献   

9.
Critical loads for acidification and eutrophication and their exceedances were determined for a selection of ecosystem effects monitoring sites in the Integrated Monitoring programme (UNECE ICP IM). The level of protection of these sites with respect to acidifying and eutrophying deposition was estimated for 2000 and 2020. In 2020 more sites were protected from acidification (67%) than in 2000 (61%). However, due to the sensitivity of the sites, even the maximum technically feasible emission reductions scenario would not protect all sites from acidification. In 2000, around 20% of the IM sites were protected from eutrophication. In 2020, under reductions in accordance with current legislation, about one third of the sites would be protected, and at best, with the maximum technically feasible reductions, half of the sites would be protected from eutrophication. Data from intensively monitored sites, such as those in ICP IM, provide a connection between modelled critical thresholds and empirical observations, and thus an indication of the applicability of critical load estimates for natural ecosystems. Across the sites, there was good correlation between the exceedance of critical loads for acidification and key acidification parameters in runoff water, both with annual mean fluxes and concentrations. There was also evidence of a link between exceedances of critical loads of nutrient nitrogen and nitrogen leaching. The collected empirical data of the ICP IM thus allow testing and validation of key concepts used in the critical load calculations. This increases confidence in the European-scale critical loads mapping used in integrated assessment modelling to support emission reduction agreements.  相似文献   

10.
Contemporary and pre-industrial global reactive nitrogen budgets   总被引:56,自引:6,他引:50  
Increases and expansion of anthropogenic emissions of both oxidized nitrogen compounds, NOx, and a reduced nitrogen compound, NH3, have driven an increase in nitrogen deposition. We estimate global NOx and NH3 emissions and use a model of the global troposphere, MOGUNTIA, to examine the pre-industrial and contemporary quantities and spatial patterns of wet and dry NOy and NHx deposition. Pre-industrial wet plus dry NOx and NHx deposition was greatest for tropical ecosystems, related to soil emissions, biomass burning and lightning emissions. Contemporary NOy+NHx wet and dry deposition onto Northern Hemisphere (NH) temperate ecosystems averages more than four times that of preindustrial N deposition and far exceeds contemporary tropical N deposition. All temperate and tropical biomes receive more N via deposition today than pre-industrially. Comparison of contemporary wet deposition model estimates to measurements of wet deposition reveal that modeled and measured wet deposition for both NO 3 and NH 4 + were quite similar over the U.S. Over Western Europe, the model tended to underestimate wet deposition of NO 3 and NH 4 + but bulk deposition measurements were comparable to modeled total deposition. For the U.S. and Western Europe, we also estimated N emission and deposition budgets. In the U.S., estimated emissions exceed interpolated total deposition by 3-6 Tg N, suggesting that substantial N is transported offshore and/or the remote and rural location of the sites may fail to capture the deposition of urban emissions. In Europe, by contrast, interpolated total N deposition balances estimated emissions within the uncertainty of each.Abbreviations EMEP European Monitoring and Evaluation Program - GEIA Global Emissions Inventory Activity - NADP/NTN National Atmospheric Deposition Program/National Trends Network in the US - NH Northern Hemisphere - NHx=NH3+NH + 4 NOx=NO+NO2 NOy total odd nitrogen=NOx+HNO3+HONO+HO2NO2+NO3+radical (NO3 .)+Peroxyacetyl nitrates+N2O5+organic nitrates - SH Southern Hemisphere - Gg 109 g - Tg 1012 g  相似文献   

11.
Ecosystem Responses to Nitrogen Deposition in the Colorado Front Range   总被引:11,自引:2,他引:9  
We asked whether 3–5 kg N y−1 atmospheric N deposition was sufficient to have influenced natural, otherwise undisturbed, terrestrial and aquatic ecosystems of the Colorado Front Range by comparing ecosystem processes and properties east and west of the Continental Divide. The eastern side receives elevated N deposition from urban, agricultural, and industrial sources, compared with 1–2 kg N y−1 on the western side. Foliage of east side old-growth Englemann spruce forests have significantly lower C:N and lignin:N ratios and greater N:Mg and N:P ratios. Soil % N is higher, and C:N ratios lower in the east side stands, and potential net N mineralization rates are greater. Lake NO3 concentrations are significantly higher in eastern lakes than western lakes. Two east side lakes studied paleolimnologically revealed rapid changes in diatom community composition and increased biovolumes and cell concentrations. The diatom flora is now representative of increased disturbance or eutrophication. Sediment nitrogen isotopic ratios have become progressively lighter over the past 50 years, coincident with the change in algal flora, possibly from an influx of isotopically light N volatilized from agricultural fields and feedlots. Seventy-five percent of the increased east side soil N pool can be accounted for by increased N deposition commensurate with human settlement. Nitrogen emissions from fixed, mobile, and agricultural sources have increased dramatically since approximately 1950 to the east of the Colorado Front Range, as they have in many parts of the world. Our findings indicate even slight increases in atmospheric deposition lead to measurable changes in ecosystem properties. Received 16 November 1999; accepted 8 February 2000.  相似文献   

12.
Dairy production across the world contributes to environmental impacts such as eutrophication, acidification, loss of biodiversity, and use of resources, such as land, fossil energy and water. Benchmarking the environmental performance of farms can help to reduce these environmental impacts and improve resource use efficiency. Indicators to quantify and benchmark environmental performances are generally derived from a nutrient balance (NB) or a life cycle assessment (LCA). An NB is relatively easy to quantify, whereas an LCA provides more detailed insight into the type of losses and associated environmental impacts. In this study, we explored correlations between NB and LCA indicators, in order to identify an effective set of indicators that can be used as a proxy for benchmarking the environmental performance of dairy farms. We selected 55 specialised dairy farms from western European countries and determined their environmental performance based on eight commonly used NB and LCA indicators from cradle-to-farm gate. Indicators included N surplus, P surplus, land use, fossil energy use, global warming potential (GWP), acidification potential (AP), freshwater eutrophication potential (FEP) and marine eutrophication potential (MEP) for 2010. All indicators are expressed per kg of fat-and-protein-corrected milk. Pearson and Spearman Rho’s correlation analyses were performed to determine the correlations between the indicators. Subsequently, multiple regression and canonical correlation analyses were performed to select the set of indicators to be used as a proxy. Results show that the set of selected indicator, including N surplus, P surplus, energy use and land use, is strongly correlated with the eliminated set of indicators, including FEP (r = 0.95), MEP (r = 0.91), GWP (r = 0. 83) and AP (r = 0.79). The canonical correlation between the two sets is high as well (r = 0.97). Therefore, N surplus, P surplus, energy use and land use can be used as a proxy to benchmark the environmental performance of dairy farms, also representing GWP, AP, FEP and MEP. The set of selected indicators can be monitored and collected in a time and cost-effective way, and can be interpreted easily by decision makers. Other important environmental impacts, such as biodiversity and water use, however, should not be overlooked.  相似文献   

13.
Environmental monitoring indicates that progress towards the goal of environmental sustainability in many cases is slow, non-existing or negative. Indicators that use environmental carrying capacity references to evaluate whether anthropogenic systems are, or will potentially be, environmentally sustainable are therefore increasingly important. Such absolute indicators exist, but suffer from shortcomings such as incomplete coverage of environmental issues, varying data quality and varying or insufficient spatial resolution. The purpose of this article is to demonstrate that life cycle assessment (LCA) can potentially reduce or eliminate these shortcomings.We developed a generic mathematical framework for the use of carrying capacity as environmental sustainability reference in spatially resolved life cycle impact assessment models and applied this framework to the LCA impact category terrestrial acidification. In this application carrying capacity was expressed as acid deposition (eq. mol H+ ha−1 year−1) and derived from two complementary pH related thresholds. A geochemical steady-state model was used to calculate a carrying capacity corresponding to these thresholds for 99,515 spatial units worldwide. Carrying capacities were coupled with deposition factors from a global deposition model to calculate characterisation factors (CF), which expresses space integrated occupation of carrying capacity (ha year) per kg emission. Principles for calculating the entitlement to carrying capacity of anthropogenic systems were then outlined, and the logic of considering a studied system environmentally sustainable if its indicator score (carrying capacity occupation) does not exceed its carrying capacity entitlement was demonstrated. The developed CFs and entitlement calculation principles were applied to a case study evaluating emission scenarios for personal residential electricity consumption supplied by production from 45 US coal fired electricity plant.Median values of derived CFs are 0.16–0.19 ha year kg−1 for common acidifying compounds. CFs are generally highest in Northern Europe, Canada and Alaska due to the low carrying capacity of soils in these regions. Differences in indicator scores of the case study emission scenarios are to a larger extent driven by variations in pollution intensities of electricity plants than by spatial variations in CFs. None of the 45 emission scenarios could be considered environmentally sustainable when using the relative contribution to GDP or the grandfathering (proportionality to past emissions) valuation principles to calculating carrying capacity entitlements. It is argued that CFs containing carrying capacity references are complementary to existing CFs in supporting decisions aimed at simultaneously reducing environmental impacts efficiently and maintaining or achieving environmental sustainability.We have demonstrated that LCA indicators can be modified from being relative to being absolute indicators of environmental sustainability. Further research should focus on quantifying uncertainties related to choices in indicator design and on reducing uncertainties effectively.  相似文献   

14.
We compiled chemical data and phytoplankton biomass (PB) data (chlorophyll a ) from unproductive lakes in 42 different regions in Europe and North America, and compared these data to inorganic nitrogen (N) deposition over these regions. We demonstrate that increased deposition of inorganic N over large areas of Europe and North America has caused elevated concentrations of inorganic N in lakes. In addition, the unproductive lakes in high N deposition areas had clearly higher PB relative to the total phosphorus (P) concentrations illustrating that the elevated inorganic N concentrations has resulted in eutrophication and increased biomass of phytoplankton. The eutrophication caused by inorganic N deposition indicates that PB yield in a majority of lakes in the northern hemisphere is (was) limited by N in their natural state. We, therefore, suggest that P limitation largely concerns lakes where the balance between N and P has been changed because of increased anthropogenic input of N.  相似文献   

15.
The responses of soil-atmosphere carbon (C) exchange fluxes to growing atmospheric nitrogen (N) deposition are controversial, leading to large uncertainty in the estimated C sink of global forest ecosystems experiencing substantial N inputs. However, it is challenging to quantify critical load of N input for the alteration of the soil C fluxes, and what factors controlled the changes in soil CO2 and CH4 fluxes under N enrichment. Nine levels of urea addition experiment (0, 10, 20, 40, 60, 80, 100, 120, 140 kg N ha−1 yr−1) were conducted in the needle-broadleaved mixed forest in Changbai Mountain, Northeast China. Soil CO2 and CH4 fluxes were monitored weekly using the static chamber and gas chromatograph technique. Environmental variables (soil temperature and moisture in the 0–10 cm depth) and dissolved N (NH4+-N, NO3-N, total dissolved N (TDN), and dissolved organic N (DON)) in the organic layer and the 0–10 cm mineral soil layer were simultaneously measured. High rates of N addition (≥60 kg N ha−1 yr−1) significantly increased soil NO3-N contents in the organic layer and the mineral layer by 120%-180% and 56.4%-84.6%, respectively. However, N application did not lead to a significant accumulation of soil NH4+-N contents in the two soil layers except for a few treatments. N addition at a low rate of 10 kg N ha−1 yr−1 significantly stimulated, whereas high rate of N addition (140 kg N ha−1 yr−1) significantly inhibited soil CO2 emission and CH4 uptake. Significant negative relationships were observed between changes in soil CO2 emission and CH4 uptake and changes in soil NO3-N and moisture contents under N enrichment. These results suggest that soil nitrification and NO3-N accumulation could be important regulators of soil CO2 emission and CH4 uptake in the temperate needle-broadleaved mixed forest. The nonlinear responses to exogenous N inputs and the critical level of N in terms of soil C fluxes should be considered in the ecological process models and ecosystem management.  相似文献   

16.
《Aquatic Botany》2004,78(3):197-216
Worldwide, seagrasses provide important habitats in coastal ecosystems, but seagrass meadows are often degraded or destroyed by cultural eutrophication. Presently, there are no available tools for early assessment of nutrient over-enrichment; direct measurements of water column nutrients are ineffective since the nutrients typical of early enrichment are rapidly taken up by plants within the ecosystem. We investigated whether, in a gradient of nutrient availability but prior to actual habitat loss, eelgrass (Zostera marina L.) plant morphology and tissue nutrients might reflect environmental nutrient availability. Eelgrass responses to nitrogen along estuarine gradients were assessed; two of these plant responses were combined to create an early indicator of nutrient over-enrichment. Eelgrass plant morphology and leaf tissue nitrogen (N) were measured along nutrient gradients in three New England estuaries: Great Bay Estuary (NH), Narragansett Bay (RI) and Waquoit Bay (MA). Eelgrass leaf N was significantly higher in up-estuary sampling stations than stations down-estuary, reflecting environmental nitrogen gradients. Leaf N content showed high variance, however, limiting its ability to discriminate the early stages of eutrophication. To find a stronger indicator, plant morphological characteristics such as number of leaves per shoot, blade width, and leaf and sheath length were examined, but they only weakly correlated with leaf tissue N. Area normalized leaf mass (mg dry weight cm−2), however, exhibited a strong and consistently negative relationship with leaf tissue N and a significant response to the estuarine nutrient gradients. We found the ratio of leaf N to leaf mass to be a more sensitive and consistent indicator of early eutrophication than either characteristic alone. We suggest the use of this ratio as a nutrient pollution indicator (NPI).  相似文献   

17.
Agriculture plays an important role in greenhouse gases (GHGs) emissions and reactive nitrogen (Nr) loss. Therefore, carbon (C) and nitrogen (N) footprint reductions in agro-ecosystem have become an increasingly hot topic in global climate change and agricultural adaptation. The objective of this study was to assess the C footprint (CF) and N footprint (NF) of double rice (Oryza sativa L.) production using life cycle assessment method in Southern China. The results showed that fertilizer application and farm machinery operation contributed the most to both GHGs and Nr emissions from agricultural inputs in the double rice production process. The CF for the early, late, and double rice was 0.86, 0.83, and 0.85 kg CO2-eq kg−1 year−1 at yield-scale, respectively. In addition, the NF was 10.47, 10.89, and 10.68 g N-eq kg−1 year−1 at yield-scale for the early, late and double rice, respectively. The largest fraction of CF and NF of double rice was the share of CH4 emission and NH3 volatilization from the paddy field, respectively. Higher CF and NF at yield-scale for Guangdong, Guangxi, and Hainan provinces were presented, compared to the average level in double rice cropping for the region, while smaller than those of Jiangxi, Hubei, and Hunan provinces. Some effective solutions would be favorable toward mitigating climate change and eutrophication of the double rice cropping region in Southern China, including reduction of fertilizer application rates, improvements in farm machinery operation efficiencies, and changes in regional allocation of double rice cropping areas.  相似文献   

18.
With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are linearly related to N application. However, field studies and meta‐analyses indicate a nonlinear relationship, in which N2O emissions are relatively greater at higher N application rates. Here, we apply a super‐linear emissions response model to crop‐specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2O emissions from croplands. We estimate 0.66 Tg of N2O‐N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2O emissions range from 20% to 40% lower throughout sub‐Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high‐resolution N application data are critical to support accurate N2O emissions estimates.  相似文献   

19.
In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO 3 concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH 3 emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year(-1) depending on the choice of critical limits. The current N import is 848 kton year(-1). A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture.  相似文献   

20.
We compared Englemann spruce biogeochemical processes in forest stands east and west of the Continental Divide in the Colorado Front Range. The divide forms a natural barrier for air pollutants such that nitrogen (N) emissions from the agricultural and urban areas of the South Platte River Basin are transported via upslope winds to high elevations on the east side but rarely cross over to the west side. Because there are far fewer emissions sources to the west, atmospheric N deposition is 1–2 kg N ha−1 y−1 on the west side, as compared with 3–5 kg N ha−1 y−1 on the east side. Species composition, elevation, aspect, parent material, site history, and climate were matched as closely as possible across six east and six west side old-growth forest stands. Higher N deposition sites had significantly lower organic horizon C:N and lignin:N ratios, lower foliar C:N ratios, as well as greater %N, higher N:Ca, N:Mg, and N:P ratios, and higher potential net mineralization rates. When C:N ratios dropped below 29, as they did in east-side organic horizon soils, mineralization rates increased linearly. Our results are comparable to those from studies of the northeastern United States and Europe that have found changes in forest biogeochemistry in response to N deposition inputs between 3 and 60 kg ha−1 y−1. Though they are low by comparison with more densely populated and agricultural regions, current levels of N deposition, have caused measurable changes in Englemann spruce forest biogeochemistry east of the Continental Divide in Colorado. Received 22 January 2001; accepted 11 June 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号