首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
采用紫外分光光度法研究了石榴皮多酚提取物及其2种纯化物(P-1和P-2)对α-葡萄糖苷酶体外抑制作用以及纯化物对该酶的抑制作用类型.结果显示,石榴皮多酚提取物和纯化物对α-葡萄糖苷酶活性均表现出较强的抑制作用,且其作用大小与浓度呈明显的剂量-效应关系;3种多酚样品中,纯化物P-2的抑酶活性最强,纯化物P-1次之,提取物最弱,它们对α-葡萄糖苷酶的半数抑制浓度(IC50,mg/mL)分别为0.045、0.185和0.278.石榴皮多酚纯化物P-2对α-葡萄糖苷酶抑制作用类型为反竞争性抑制;浓度为0.01 mg/mL时该纯化物对α-葡萄糖苷酶的抑制常数Ki为1.22 μg/mL.  相似文献   

2.
一种pH稳定的黄色漆酶的快速纯化和性质特征   总被引:1,自引:0,他引:1  
通过丙酮沉淀和 DEAE- cellulose DE52 柱层析, 快速、有效地从一株白腐菌 Trametes sp. SQ01 的发酵液中纯化了漆酶。纯化的漆酶并非传统漆酶那样呈现蓝色, 而是一种黄色蛋白。以 ABTS 为底物时, 该酶的最适 pH 和温度分别是 pH 4.5 和 70°C, Km 为 0.029 mmol/L。T. SQ01 漆酶在 pH 3.0~11.0时, 酶活相对稳定, 在 pH 5.0 时最为稳定, 是目前报道的 pH 稳定性最好的漆酶。低浓度的金属离子(1 mmol/L) Cu2+、Mg2+ 、Ca2+ 和Co2+ 对漆酶有促进作用, 而高浓度(5 mmol/L)的Co2+、Zn2+、 Mn2+、Mg2+ 却抑制漆酶酶活。SDS 对该酶有激活作用, 当其浓度为1 mmol/L时, 漆酶相对酶活达到128%。DTT对漆酶强烈抑制, 即使是浓度为1 mmol/L, 亦可完全抑制漆酶酶活。纯化后的漆酶对亮蓝(RBBR) (100 mg/L)的脱色能力显著, 0.5 U/mL 的漆酶在 10 min内即可达到 80%的脱色率。T. sp. SQ01 漆酶的快速纯化以及高效脱色的能力表明该酶在染料脱色降解方面有着广阔的应用前景。  相似文献   

3.
螺旋藻源血管紧张素转化酶抑制肽的纯化和鉴定   总被引:2,自引:0,他引:2  
血管紧张素转化酶(ACE)抑制剂通过影响肾素-血管紧张素系统,对减缓和抑制高血压具有重要的作用.该研究通过超滤、凝胶过滤色谱、反相高效液相色谱等方法,从钝顶螺旋藻的木瓜蛋白酶水解液中分离、纯化得到一种血管紧张素转化酶(ACE)抑制肽,并利用基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)和氨基酸测序对纯化肽进行鉴定.此外,对其抑制类型和体外模拟消化环境稳定性也进行了研究.结果表明,分子质量范围为0~3000ku的酶解液ACE抑制活性最高,IC50值为(1.03±0.04)g/L.该部分酶解液通过纯化获得ACE抑制肽,IC50值为(0.0094±0.0002)g/L,相当于(27.36±0.14)μmol/L,序列经鉴定为Val-Glu-Pro.Lineweaver-Burk图和Dixon图表明该ACE抑制肽为非竞争性抑制剂,Ki值为(23.59±0.54)μmol/L.体外稳定性实验显示,该抑制肽在胃蛋白酶、胰凝乳蛋白酶、胰蛋白酶等胃肠蛋白酶的消化下能够保持良好的抑制活性,表明螺旋藻源ACE抑制肽可以用于降血压功能食品和药剂方面,具有很好的发展前景.  相似文献   

4.
海洋微生物几丁质酶分离纯化及其抗真菌活性   总被引:2,自引:0,他引:2  
以实验室筛选的海洋产几丁质酶短芽胞杆菌属(Bacillus brevis sp.)菌株Bspl,经往复式摇床振荡培养96h后,发酵液先后采取了75%的硫酸铵盐析、透析、几丁质亲和层析、SDS—PAGE等方法对几丁质粗酶液进行分离纯化和鉴定。几丁质亲和层析一步纯化后,经过SDS—PAGE电泳测定该酶的分子量为23ku,其比活力为86.65.纯化倍数为1.707、产率为32.1%。纯化的几丁质酶能抑制病原真菌的生长,对病原真菌的拮抗作用具有广谱性。同时研究了几丁质酶的稳定性,以胶态几丁质为底物,分离的几丁质酶在pH7.5,55.0℃左右具有最大酶活性;Zn^2+、Cu^2+和Hg^2+能强烈抑制几丁质酶活性;Ni^+和EDTA抑制20%-40%;然而5mmol/LCo^2+可以使几丁质酶活性提高1.4倍;Mg^2+、Ca^2+等也能使酶活性增加。  相似文献   

5.
大鼠肝谷胱甘肽转硫酶的制备及其部分性质的研究   总被引:1,自引:0,他引:1  
本文通过CM-52纤维素柱层析分离得到六种大鼠肝谷胱甘肽转硫酶同工酶;经GSH—亲和层析柱进一步纯化,得到纯酶。讨论了该酶的部分理化性质。抑制实验结果表明,胆酸类化合物对谷胱甘肽转硫酶的抑制作用类型为非竞争性。  相似文献   

6.
胰岛素降解酶是维持体内糖代谢平衡和蛋白质稳态的关键蛋白质,也是2型糖尿病及阿尔茨海默病临床药物的重要靶点。本研究构建了野生型鼠源胰岛素降解酶的大肠杆菌ppSUMO表达系统,并完成了鼠源胰岛素降解酶的表达纯化及功能测定。采用ppSUMO表达系统得到的融合蛋白具有组蛋白标签和ULP1酶切位点,通过ULP1酶对亲和纯化得到的融合蛋白进行酶切,可以获得无标签胰岛素降解酶。另外,根据胰岛素降解酶的理化性质(如等电点、相对分子质量),采用离子交换层析和凝胶过滤层析两种纯化方法,可完成蛋白质的纯化。纯化所获得的野生型胰岛素降解酶通过特异性的荧光底物Mca-RPPGFSAFK(Dnp)进行活性检测。本方法获得的野生型胰岛素降解酶的纯度约为90%,对已知抑制剂杨梅素具有很好的抑制响应。以上结果提示,该表达系统获取的胰岛素降解酶具有较好的纯度和活性,为日后胰岛素降解酶的结构与功能研究及体外临床药物研发奠定了实验基础。  相似文献   

7.
小麦内切多聚半乳糖醛酸酶抑制蛋白的分离纯化研究   总被引:9,自引:0,他引:9  
小麦内切多聚半乳糖醛酸酶抑制蛋白的分离纯化研究郑远旗,杨宗剑,李建吾,周立,吴文莲(四川大学生物系,成都610064)余露(中国科学院成都生物研究所,成都610041)关键词内切多聚半乳糖醛酸酶抑制蛋白;内切多聚半乳糖醛酸酶;纯化;小麦内切多聚半乳糖...  相似文献   

8.
[目的]旨在发现胱硫醚β合酶(Cystathionineβ-synthase,CBS)的新型抑制剂并研究其作用机制。[方法]通过构建血红素结合位点缺失或氧化还原位点突变的CBS突变体(CBS_(70-413)和CBS C272A/C275A),基于该酶的测活方法和PLP荧光光谱分析,研究3个CBS新型抑制剂的抑制有效性及其分子作用机制。[结果]亲和纯化得到了有活性的CBS_(70-413)和CBS C272A/C275A突变蛋白以用于抑制剂的机制研究。研究发现,CBS_(70-413)突变体可高效拮抗这些抑制剂的抑制效果,而C272A/C275A突变则不行,提示这些抑制剂可与该酶的血红素结合位点结合而抑制该酶活力。进一步研究结果表明,它们可别构调控该酶辅基PLP的含量。[结论]3个抑制剂的分子作用机制为,通过与该酶的Heme位点结合,并通过该位点去别构调控PLP辅基与活力位点的结合,从而抑制该酶的活力。  相似文献   

9.
耐冷皮壳正青霉一种木聚糖酶的纯化与性质研究   总被引:1,自引:0,他引:1  
研究了耐冷皮壳正青霉Eupenicillium crustaceum一种木聚糖酶的纯化和酶学性质。采用硫酸铵沉淀和阴离子交换层析的方法,从耐冷皮壳正青霉液体发酵液中分离纯化出一种亚基分子量35kDa的木聚糖酶。酶学性质研究表明,酶的最适pH值为5.5,在pH4.5-6.5范围内具有较高的催化活性。最适温度为50℃,20℃下酶活为最高酶活的40%。Ag+和Fe2+大幅度提高木聚糖酶的酶活,而Mn2+和Hg2+强烈抑制木聚糖酶的活性。同时,该木聚糖酶具有严格的底物特异性。  相似文献   

10.
【目的】研究链霉菌Streptomyces sp.M-Z18ε-聚赖氨酸降解酶(Pld)的分离纯化及其生理生化特性,并利用该酶制备低聚合度ε-聚赖氨酸(ε-PL)。【方法】菌体细胞经超声破碎、NaSCN溶解和HiTrapTMButyl HP疏水层析制备到Pld,随后研究了其酶学性质、动力学和降解ε-PL过程,最后利用常量稀释法比较了不同聚合度范围ε-PL的最小抑菌浓度。【结果】从Streptomyces sp.M-Z18细胞膜上分离纯化到Pld,纯化倍数为80.4倍,回收率达到59.3%。以L-赖氨酰对硝基苯胺为底物,酶促反应的最适温度为37℃,最适pH为7.0,动力学常数Km为0.621 mmol/L,Vmax为701.16 nmol/min·mg;酶活在pH 7.0-10.0和50℃以下稳定。降解ε-PL实验发现,纯化到的Pld以内切方式降解ε-PL。抑菌实验表明,高聚合度ε-PL(30-35)对细菌的抑制效果较好,而低聚合度ε-PL(8-20)更有利于抑制酵母菌的生长,各种聚合度ε-PL对霉菌的生长抑制均较差。【结论】从ε-PL产生菌中分离纯化到内切型ε-PL降解酶,发现不同聚合度范围ε-PL对微生物的抑制能力存在显著差异。  相似文献   

11.
The turnover numbers and other kinetic constants for human alcohol dehydrogenase (ADH) 4 ("stomach" isoenzyme) are substantially larger (10-100-fold) than those for human class I and horse liver alcohol dehydrogenases. Comparison of the primary amino acid sequences (69% identity) and tertiary structures of these enzymes led to the suggestion that residue 317, which makes a hydrogen bond with the nicotinamide amide nitrogen of the coenzyme, may account for these differences. Ala-317 in the class I enzymes is substituted with Cys in human ADH4, and locally different conformations of the peptide backbones could affect coenzyme binding. This hypothesis was tested by making the A317C substitution in horse liver ADH1E and comparisons to the wild-type ADH1E. The steady-state kinetic constants for the oxidation of benzyl alcohol and the reduction of benzaldehyde catalyzed by the A317C enzyme were very similar (up to about 2-fold differences) to those for the wild-type enzyme. Transient kinetics showed that the rate constants for binding of NAD(+) and NADH were also similar. Transient reaction data were fitted to the full Ordered Bi Bi mechanism and showed that the rate constants for hydride transfer decreased by about 2.8-fold with the A317C substitution. The structure of A317C ADH1E complexed with NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol at 1.2 ? resolution is essentially identical to the structure of the wild-type enzyme, except near residue 317 where the additional sulfhydryl group displaces a water molecule that is present in the wild-type enzyme. ADH is adaptable and can tolerate internal substitutions, but the protein dynamics apparently are affected, as reflected in rates of hydride transfer. The A317C substitution is not solely responsible for the larger kinetic constants in human ADH4; thus, the differences in catalytic activity must arise from one or more of the other hundred substitutions in the enzyme.  相似文献   

12.
Molecular tools for inactivating a yeast enzyme in vivo.   总被引:2,自引:1,他引:1  
As part of an effort to develop a new means of inducibly inactivating cellular proteins in vivo, three monoclonal antibodies which neutralize yeast alcohol dehydrogenase (ADH) activity were isolated and characterized with respect to criteria important for the inactivation strategy. The significance of these criteria is considered, and a general means of generating appropriate antibodies is suggested. All three antibodies described here were specific for ADH I; they did not recognize the closely related isozyme ADH II in a plate-binding assay and did not immunoprecipitate molecules other than ADH from a Saccharomyces cerevisiae extract. Neutralization occurred in a yeast extract and, for two antibodies, was blocked by high concentrations of the coenzyme NAD+. This finding suggests that the antibodies may block enzyme activity by stabilizing an inactive form of ADH lacking bound NAD+. These results provide a foundation for the use of these antibodies to inactivate ADH in vivo.  相似文献   

13.
A new means of inducibly inactivating a cellular protein.   总被引:8,自引:1,他引:7       下载免费PDF全文
This paper presents a general means of eliminating the function of a single protein without relying on genetic alterations in its structure or level of synthesis. The strategy is based on the inducible cellular expression of neutralizing antibody to inactivate the protein selectively. The feasibility of this approach is illustrated by using alcohol dehydrogenase I (ADH I) in Saccharomyces cerevisiae as a model. Heavy- and light-chain cDNAs were isolated from a hybridoma secreting an antibody which neutralizes yeast ADH I. The cDNAs were characterized with respect to their length and identity, their signal sequences were removed, and synthetic translation initiation codons were joined to them. These truncated sequences were then inserted into an inducible expression vector and shown to be expressed as stable heavy and light chains, which assemble and bind antigen. The sequences were introduced into yeast mutants containing different levels of ADH activity, and evidence is provided that the antibodies produce limited neutralization of enzyme activity in vivo. In principle, the approach can be used for any cell type in which functional antibody can be inducibly expressed.  相似文献   

14.
15.
A comparative study of cell cytosol alcohol dehydrogenase (ADH) from yeast Torulopsis candida IBFM-Y-127 grown on glucose and hexadecane which were the only source of carbon, was made. In both cases ADH had a pH optimum within the range of 7.0--10.0, when various normal primary alcohols (C2--C16) were used. The enzyme was active only in the presence of NAD, which cannot be substituted by NADP. The total activity of ADH decreased approximately 8-fold when the length of hydrocarbon radicals was changed from C2 up to C16. When the cells were grown on hexadecane, only ethyl, n-buthyl, n-amyl and n-hexyl alcohols were active as substrates. The dehydration rate of each alcohol was far lower than that for the cytosol of glucose-grown cells. In the latter case the enzyme activity also decreased with an increase in the alcohol radical from C2 to C6. In all cases studied methyl alcohol and cyclic (cinnamyl alcohol--C8) alcohol were not dehydrated at all. Disc-electrophoresis in polyacrylamide gel, involving gel colouration for the assay of enzyme activity showed that glucose--grown cell cytosol contained three forms of ADH. One of those forms was highly active when short--chain normal primary alcohols were used; this form may be probably regarded as "classical" ADH (EC 1.1.1.1). The two other forms caused intensive dehydration of long-chain alcohols (the best substrates were C7--C10 alcohols for one form and C10--C14 for the others). The two forms of ADH are probably isoenzymes of octanol dehydrogenase (EC 1.1.1.73). Cytosol of cells grown on n-alcane, had a reduced number of ADH forms. The data obtained are discussed in terms of the regulatory role of carbon and energy source (glucose or hexadecane) in the redistribution of alcohol dehydrogenases between structural components of cells (mitochondria) and cytosol.  相似文献   

16.
The interaction of yeast alcohol dehydrogenase (ADH) with the reactive chlorotriazine dye Vilmafix Blue A-R (VBAR) was studied. VBAR was purified to homogeneity on lipophilic Sephadex LH-20 and characterised by reverse phase HPLC and analytical TLC. Incubation of ADH with purified VBAR at pH 8.0 and 37 degrees C resulted in a time-dependent inactivation of the enzyme. The observed rate of enzyme inactivation (kobs) exhibited a non-linear dependence on VBAR concentration from 22 to 106 nmol, with a maximum rate of inactivation (k3) of 0.134 min-1 and kD of 141.7 microM. The inhibition was irreversible and activity could not be recovered by gel-filtration chromatography. The inactivation of ADH by VBAR was competitively inhibited by the nucleotides NADH and NAD+. These results suggest that VBAR acts as an affinity label at the nucleotide binding site of yeast ADH.  相似文献   

17.
Expression systems for the heterologous expression of Drosophila melanogaster alcohol dehydrogenase (ADH) in Saccharomyces cerevisiae have been designed, analyzed and compared. Four different yeast/Escherichia coli shuttle vectors were constructed and used to transform four different yeast strains. Expression was detectable in ADH- yeast strains, from either a constitutive promoter, yeast ADH1 promoter (ADCp), or a regulated promoter, yeast GALp. The highest amount of D. melanogaster ADH was obtained from a multicopy plasmid with the D. melanogaster Adh gene expressed constitutively under the control of yeast ADCp promoter. The D. melanogaster enzyme was produced in cell extracts, as assessed by Coomassie blue staining and Western blotting after polyacrylamide-gel electrophoresis and it was fully active and able to complement the yeast ADH deficiency. Results show that D. melanogaster ADH subunits synthesized in yeast are able to assemble into functional dimeric forms. The synthesized D. melanogaster ADH represents up to 3.5% of the total extracted yeast protein.  相似文献   

18.
The activities of yeast ADH I and ADH II towards long chain alcohols and diols were studied using rather unusual conditions (1.0 M Tris pH 8.75, approximately 0.3 mg/ml enzyme and [S]相似文献   

19.
Zymomonas mobilis is endowed with two isoenzymes of fermentative alcohol dehydrogenase, a zinc-containing enzyme (ADH I) and an iron-containing enzyme (ADH II). The activity of ADH I remains fully conserved, while ADH II activity decays when anaerobic cultures are shifted to aerobiosis. This differential response depends on the metal present on each isoenzyme, since pure preparations of ADH I are resistant to oxidative inactivation and preparations of zinc-containing ADH II, obtained by incubation of pure ADH II with ZnCl2, showed no modification of the target for oxidative damage (His277-containing peptide). It was consistently found that the activity of the zinc-containing ADH II, once submitted to oxidative treatment, was fully restored when iron was reintroduced into the enzyme structure. These results indicate that zinc bound to these proteins plays an important role in the protection of their active centers against oxidative damage and may have relevant biochemical and physiological consequences in this species.  相似文献   

20.
Human alcohol dehydrogenase (ADH, tiff isozyme of class I) was expressed in Escherichia coli, purified to homogeneity, and characterized regarding N-terminal processing. The expression system was obtained by ligation of a cDNA fragment corresponding to the fl-subunit of human liver alcohol dehydrogenase into the vector pKK 223-3 containing the tac promoter. The enzyme, detected by Western-blot analysis and ethanol oxidizing activity, constituted up to 3 ~o of the total amount of protein. Recombinant ADH was separated from E. coli ADH by ion-exchange chromatography and the isolated enzyme was essentially pure as judged by SDS-polyacrylamide gel electrophoresis and sequence analysis. The N-terminal sequence was identical to that of the authentic fl-subunit except that the N-terminus was non-acetylated, indicating a correct removal of the initiator methionine, but lack of further processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号