首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
刘莹莹  卜宁  卢元 《生物工程学报》2019,35(12):2269-2283
无细胞合成生物系统,能够在体外完成生命转录翻译过程,因体系灵活开放、便于控制、表达周期短、高耐受性等特点,可表达细胞系统难以表达的蛋白质。随着无细胞生物传感和体系冻干技术的不断发展,其在医药健康领域的应用不断拓展。本文综述了无细胞合成生物学在按需生物医药合成和便携式医疗检测等医药健康领域的研究进展,该体系的进一步发展有潜力实现更复杂后修饰蛋白质药物的合成、可丰富无细胞生物传感器类型并提高其灵敏性。无细胞合成生物学作为新兴工程策略,未来必将更好地应用于高通量医药蛋白质筛选、新型病原体的检测等医药健康领域。  相似文献   

2.
分子识别和药物递送对疾病的早期诊断和靶向治疗至关重要。DNA作为一种天然纳米分子,具有良好的生物相容性、分子识别性及序列可编程性等特点,因此在生物医学研究中受到广泛关注。然而,DNA纳米材料存在依赖于光响应系统且不能穿透细胞膜等缺点,导致单独使用无法满足实际应用的需求。近年来,涌现出大量DNA-金属纳米材料,这些复合材料具有光化学特性、组织穿透能力和药物装载能力等功能,克服了单一材料的缺陷,在生物传感、生物成像和药物靶向递送中表现出巨大的应用潜力。本文集中于3种近年热门的DNA-金属纳米材料(DNA-铜纳米材料、DNA-上转换纳米材料、DNA-金属有机框架纳米材料),依据DNA与各金属纳米材料的结合方式进行合理分类,介绍其在生物传感、生物成像和药物递送中的最新应用进展,并对未来发展方向进行了展望。  相似文献   

3.
合成生物学细胞传感技术为快速、现场检测食品污染物提供了一种新型替代方法。由于细胞内环境相对稳定,合成生物学细胞传感器有较强的抗干扰能力;由于细胞能够通过自我复制而实现增殖,细胞传感器在生产上具有简单、廉价、快速的特点,因此在食品安全快速检测中具有良好的应用前景。本文综述了合成生物学细胞传感器核心元件的组成、构建方法和类型,介绍了多功能细胞传感器的合成生物学基因回路,列举了细胞传感器在食品安全快速检测中的商业化应用前景,并阐述了细胞传感器在食品安全快速检测中的挑战和发展趋势。  相似文献   

4.
合成生物学的迅猛发展推动了微生物细胞工厂中多种复杂化学品的生物合成,但仍存在产量低、生产效率不高等诸多问题。基因编码型生物传感器可以感知细胞内外代谢物浓度及外界环境的波动,产生可测量的信号输出或调控通路中的基因表达水平,具有成本低、操作简单、可再生等优点。目前,基因编码型生物传感器已经成为合成生物学和代谢工程的重要组成部分,是微生物细胞工厂中代谢动态调控及理想表型进化/筛选的强大工具。概述了基因编码型生物传感器的组成及工作原理,重点介绍了基因编码型生物传感器在微生物代谢动态调控及高通量筛选中的最新研究进展,就基因编码型生物传感器设计与构建过程中面临的挑战进行探讨,并展望了其今后的发展方向。  相似文献   

5.
场效应晶体管生物传感器因其灵敏度高、分析速度快、无标记、体积小、操作简单等特点而受到了很多关注,广泛应用于DNA、蛋白质、细胞、离子等生物识别物的检测。近年来,更有纳米材料和微电子技术在传感器设计中提高传感器的传感性能,场效应晶体管生物传感器朝着高灵敏、微型化、快速化以及多功能化的方向以令人惊叹的速度发展。研究场效应晶体管生物传感器工作原理,阐述近年来场效应晶体管生物传感器在生物医学检测领域中最新的研究进展与应用,探讨场效应晶体管生物传感器克服各种缺陷的应对策略,为该传感器在未来生物医学检测中的开发提供参考。  相似文献   

6.
基于石墨烯优异的导电性能、大的比表面积、良好的生物相容性,在传感器的构建方面,表现出比其他材料更加优良的性能。石墨烯在传感领域中的应用一般通过功能化来实现,石墨烯与聚合物或纳米粒子的结合可以显著增强传感器的响应,提高检测的灵敏性。综述了近年来石墨烯及其相关材料在临床分析、环境监测和食品安全控制等传感领域中的应用研究进展,通过灵敏度、检测限等分析数据对具有良好水分散性和生物相容性,比表面大,表面修饰灵活以及制备简单的氧化石墨烯及其衍生物(含氧基团)为基础的传感器的分析性能进行了综合评价。同时对石墨烯及其衍生物这一新型传感材料在未来的研究趋势进行了展望:精确控制石墨烯单分散片的尺寸、形状;研究催化作用下的石墨烯与分析物分子电极反应间的传感机制;减少石墨烯片的聚集,精确控制石墨烯基传感系统微结构。未来可望发展具有更加强大特性的便携式、芯片化传感器,实现更短时间内复杂环境样品的多重分析,进一步提高检测灵敏性和选择性,增强传感器的稳定性和重复使用性,克服毒性和生物不容性。  相似文献   

7.
细胞融合是大多数真核生物发育中的一个基本生物过程。酿酒酵母作为真核生物基因组合成和转移的经典模式生物,其细胞融合机制不清楚,因此限制了它的合成生物学应用。在酿酒酵母的融合过程中,细胞对信息素做出反应,触发促分裂原活化的蛋白激酶(MAPK)级联反应以启动交配,随后细胞发生极化、细胞壁重塑、膜融合和核配。其中,研究可能的“融合酶”——受信息素调控的多跨膜蛋白(Prm1)为推动细胞融合可控性提供方向。酵母交配信号通路的合成生物学应用基于生物元件、生物装置与生物系统以及多细胞互作3个层次,本文分析了信息素诱导型启动子、G蛋白偶联受体、支架蛋白、转录因子、双稳态开关、调谐器、底盘细胞等在生物传感器及代谢工程等领域的应用。开发理性设计的模块化线路和优化交配途径来精确调控酵母交配的生理事件,对于细胞融合的人工可操纵性发展具有重要意义。  相似文献   

8.
细胞/细菌驱动的药物传递系统是一种有前景的药物递送策略. 该策略将具有不同优异特性的活细胞/细菌与药物有机结合,能够有效克服传统纳米药物生物利用率低、靶向性能弱、组织穿透性不强等缺陷. 得益于对目标病灶特异响应,这类药物递送系统不仅能够实现药物高效的主动靶向递送,还可以降低对正常组织的毒副作用,目前已成功运用于药物呈递,在疾病诊断和治疗领域展示了广阔的应用前景. 本文初步探讨了细胞/细菌驱动的药物递送系统的研究进展,并对其未来研究进行展望.  相似文献   

9.
核酸药物作为新型基因治疗药物备受关注,但生物学稳定性差、易被体内核酸酶降解、生物利用度低、靶组织内聚集浓度低等是制 约其发展的主要因素。新的药物递送技术的快速发展在一定程度上解决了核酸药物的稳定性及靶向递送问题,极大地推动了核酸药物的研 发进展。尤其是多肽蛋白类递送载体,已成为核酸药物递送系统研究领域的热点之一。介绍核酸药物递送载体多肽修饰的两种主要方式—— 共价缀合和非共价络合,重点综述近年来多肽缀合物和复合物以及多肽修饰的载体在核酸药物递送系统中的应用研究,探讨多肽介导的核 酸药物递送系统在应用中存在的问题,为新型核酸药物递送系统研发提供参考。  相似文献   

10.
末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase, TdT)是聚合酶X家族中的一员,与典型的DNA聚合酶不同,TdT以恒温的无模板依赖的方式催化脱氧核糖核苷三磷酸(dNTP)聚合到寡核苷酸的3'羟基端来合成DNA。并且TdT对底物的耐受性高具有聚合修饰型dNTP的能力,如荧光修饰的dNTP、生物素修饰的dNTP,甚至人工碱基均可作为其良好底物。TdT的这些生化特性使其被广泛的应用在生物传感和核酸合成领域中,促进了许多基于核酸的工具和方法的发展,并为酶促从头合成DNA技术的发展奠定基础。介绍了TdT的性质,重点总结了它在其介导的生物检测技术、核酸的修饰技术以及酶促合成DNA技术三个方面的核心作用、目前面临的挑战以及未来研究的方向,以期促进TdT在生物传感器和核酸合成中的进一步应用。  相似文献   

11.
近20年间,DNA介导的生物传感器得到了快速的发展,DNA能够作为遗传信息重要载体的同时,其折叠成的空间构象也具有很多的功能。功能核酸的概念逐渐引入到了包括生物传感、生物成像、医疗在内的重要领域中。10-23脱氧核酶作为功能核酸的一种,是通过体外筛选技术得到的,Mg2+存在的条件下能够特异性识别并切割RNA,切割位点为RNA中的嘧啶与嘌呤间的磷酸二酯键。由于其独特的识别以及切割能力,10-23脱氧核酶介导的相关疾病治疗得到了广泛的应用,同时人们逐渐开始关注10-23脱氧核酶介导的生物传感器的搭建。对于10-23脱氧核酶的结构、性质、作用方式及改进修饰进行了介绍,并对10-23脱氧核酶介导的生物传感器的搭建及应用进行了综述,旨为人们在未来使用10-23脱氧核酶搭建新型快捷生物传感器奠定理论基础。  相似文献   

12.
荧光铜纳米簇(Fluorescent copper nanoclusters,CuNCs)是以脱氧核糖核酸链(Deoxyribonucleic acid,DNA)为模板,以二价铜离子(Cu2+)、抗坏血酸等为反应物生成的铜晶体,纳米级大小,其具有荧光性,可以作为生物传感器输出信号的一种方式。荧光铜纳米簇的生成快速、简便、安全,因此近年来涌现出很多关于荧光铜纳米簇原理和应用方面的研究。从支持传感器工作的介导物质以及信号输出方式两方面对荧光铜纳米簇进行分类,详细阐述了每一类别传感器工作的原理,并对比同类型传感器的优缺点,最后对荧光铜纳米簇介导的生物传感器目前存在的不足及今后的发展趋势进行了展望。以便读者对荧光铜纳米簇生物传感器发展历程和方向,对荧光铜纳米簇生物传感器的实用性和多形性有所了解,在未来的研究发展中得到启示,使荧光铜纳米簇成为一种更加实用和便捷的生物传感工具。  相似文献   

13.
S1核酸酶是一种高度单链特异的核酸内切酶,在最适的酶催化反应条件下,降解单链DNA或RNA,产生带5'-磷酸的单核苷酸或寡核苷酸。对双链DNA、双链RNA和DNA-RNA杂交体相对不敏感。目前,基于S1核酸酶内切酶的活性,搭载不同的信号输出及扩增方式,已经构建了一系列的生物传感器,实现了对金属离子、单链核苷酸、氨基酸等物质的检测,还能应用于核酸反应体系的纯化,多元化基因文库的构建等方面。首先从结构、性质方面介绍了S1核酸酶,并对近年来基于S1核酸酶介导的、具有代表性的生物传感器的组建及应用情况进行了综述;然后主要根据所检测的靶物质不同,对S1核酸酶介导的各种传感器进行了分类介绍;最后分析了目前S1核酸酶的研究现状,并且对未来S1核酸酶介导的生物传感器的发展方向进行了展望。  相似文献   

14.
末端脱氧核酸转移酶(TdT酶)是一种DNA聚合酶,可以催化脱氧核苷酸结合到DNA分子的3'羟基端,并且该反应无需特定的模板。目前,基于末端脱氧核酸转移酶可对模板核酸链的末端进行延伸这一特性,搭载不同的信号输出及扩增方式,构建了一系列的生物传感技术,如电化学生物传感器、荧光生物传感器、表面离子共振生物传感器等。对各类传感器的基本设计原理和应用进行了阐述。根据TdT酶的性质设计的一系列生物传感器具有简单、快速、廉价、灵敏度高、特异性好等优点,实现了对金属离子、病原体、蛋白质等的检测。最后对TdT酶介导的生物传感器目前的研究现状进行了总结并且对TdT酶未来的发展方向进行了展望。  相似文献   

15.
16.
17.
18.
目的:获得抗血管内皮生长因子165(VEGF165)单克隆抗体,并对其功能进行初步验证。方法:利用噬菌体抗体库展示技术筛选与VEGF165结合的噬菌体克隆并测序,以测序正确的阳性克隆质粒为模板,PCR扩增抗体的轻重链可变区基因,并克隆至哺乳动物细胞表达载体中,构建全抗体表达载体;将全抗体表达载体转染293E细胞,收取培养细胞上清,利用ProteinA亲和纯化抗体;通过结合ELISA、表面等离子共振检测抗体的亲和力,以人脐静脉内皮细胞(HUVEC)为模型验证抗体功能。结果:经过噬菌体抗体库展示技术筛出1个与VEGF165特异性结合的抗体序列VG2;293E细胞表达了VG2全抗体蛋白,SDS-PAGE显示VG2抗体纯度较高;BIAcore检测结果表明该抗体具有较高亲和力(KD=0.56nmol/L),竞争抑制ELISA结果表明VG2抗体能抑制VEGF与VEGF受体(VEGFR)的结合(IC50为1.470μg/mL),进一步实验结果表明VG2能够抑制VEGF引起的HUVEC增殖。结论:制备了靶向VEGF165的全人源单克隆抗体VG2,该抗体具有较高的亲和力,能阻断VEGF165/VEGFR2的结合,并抑制HUVEC的增殖,可以作为潜在药物应用于肿瘤治疗。  相似文献   

19.
臭椿沟眶象幼虫消化道柔软脆弱,尤其是1龄与2龄幼虫的消化道纤细易断,解剖难度较大。本文介绍了臭椿沟眶象幼虫消化道的具体解剖方法,根据不同龄期幼虫脂肪含量与消化道韧性差异,对1-2龄和3-7龄幼虫,分别使用纵切法和剥离法解剖。结果表明:臭椿沟眶象幼虫消化道分为前肠、中肠和后肠。前肠为窄而细的管状,没有明显的嗉囊和前胃。中肠分为2部分,前部膨大,后部为光滑的管状。后肠由回肠和直肠组成。马氏管6根。这两个方法提高了此幼虫消化道解剖的效率与成功率,希望能为具有体壁柔软、消化道脆弱易损等特点昆虫幼虫的消化道解剖提供借鉴与参考。  相似文献   

20.
混合盐碱胁迫对地被菊寒露红生长的影响   总被引:1,自引:0,他引:1  
该研究以地被菊寒露红(Chrysanthemum morifolium ‘Hanluhong’)为材料,一方面研究混合盐碱胁迫对其生长的影响,另一方面通过模拟青铜峡盐碱胁迫程度,探讨其在青铜峡地区的适生性。设置3个pH梯度(7.0、8.0、9.0),在每个pH梯度下用NaCl、Na_2CO_3、NaHCO_3、Na_2SO_4配置不同浓度(0、0.2%、0.4%、0.6%、0.8%、1.0%)的混合液对地被菊植株进行胁迫处理,观察并测定不同胁迫条件下植株株高、根长、光合特性及叶绿素荧光参数的变化。结果表明:(1)长时间生长在高盐碱环境会使地被菊寒露红生长缓慢,光合作用参数和叶绿素荧光参数下降。(2)青铜峡实验模拟组(pH=8.0,盐浓度为0.4%)的植株株高、根长的伸长速度随胁迫时间的延长均呈先降低后升高的趋势;同时植株的光合作用参数、叶绿素荧光参数有降低趋势,但荧光参数下降变化未达到显著水平。综合分析可得,高盐、高碱环境均不利于地被菊寒露红植株的生长发育。在青铜峡地区的盐碱胁迫强度下,地被菊寒露红具有一定的抗盐碱性,基本能够正常生长,可用于当地植被及生态环境修复和园林造景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号