首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims In this study, we examined the extent to which between-species leaf size variation relates to variation in the intensity of leaf production in herbaceous angiosperms. Leaf size variation has been most commonly interpreted in terms of biomechanical constraints (e.g. affected by plant size limitations) or in terms of direct adaptation associated with leaf size effects in optimizing important physiological functions of individual leaves along environmental gradients (e.g. involving temperature and moisture). An additional interpretation is explored here, where adaptation may be more directly associated with the number of leaves produced and where relatively small leaf size then results as a trade-off of high 'leafing intensity'—i.e. number of leaves produced per unit plant body size.Methods The relationships between mean individual leaf mass, number of leaves and plant body size were examined for 127 species of herbaceous angiosperms collected from natural populations in southern Ontario, Canada.Important findings In all, 88% of the variation in mean individual leaf mass across species, spanning four orders of magnitude, is accounted for by a negative isometric (proportional) trade-off relationship with leafing intensity. These results parallel those reported in recent studies of woody species. Because each leaf is normally associated with an axillary bud or meristem, having a high leafing intensity is equivalent to having a greater number of meristems per unit body size—i.e. a larger 'bud bank'. According to the 'leafing intensity premium' hypothesis, because an axillary meristem represents the potential to produce either a new shoot or a reproductive structure, high leafing intensity should confer greater architectural and/or reproductive plasticity (with relatively small leaf size required as a trade-off). This greater plasticity, we suggest, should be especially important for smaller species since they are likely to suffer greater suppression of growth and reproduction from competition within multi-species vegetation. Accordingly, we tested and found support for the prediction that smaller species have not just smaller leaves generally but also higher leafing intensities, thus conferring larger bud banks, i.e. more meristems per unit plant body size.  相似文献   

2.
Yang D  Li G  Sun S 《Annals of botany》2008,102(4):623-629

Background and Aims

Trade-offs are fundamental to life-history theory, and the leaf size vs. number trade-off has recently been suggested to be of importance to our understanding leaf size evolution. The purpose of the present study was to test whether the isometric, negative relationship between leaf size and number found by Kleiman and Aarssen is conserved between plant functional types and between habitats.

Methods

Leaf mass, area and number, and stem mass and volume of current-year shoots were measured for 107 temperate broadleaved woody species at two altitudes on Gongga Mountain, south-west China. The scaling relationships of leaf size (leaf area and mass) vs. (mass- and volume-based) leafing intensity were analysed in relation to leaf habit, leaf form and habitat type. Trait relationships were determined with both a standardized major axis method and a phylogenetically independent comparative method.

Key Results

Significant negative, isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. In particular, about 99 % of the variation in leaf mass across species could be accounted for by proportional variation in mass-based leafing intensity. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, evergreen species had a lower y-intercept in the scaling relationships of leaf area vs. leafing intensity than deciduous species. This indicated that leaf area was smaller in the evergreen species at a given leafing intensity than in the deciduous species. The compound-leaved deciduous species were observed usually to have significant upper shifts along the common slopes relative to the simple-leaved species, which suggested that the compound-leaved species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes.

Conclusions

The negative, isometric scaling relationship between leaf size and number is largely conserved in plants, while the leaf size vs. number trade-off can be mediated by leaf properties. The isometry of the leaf size vs. number relationship may simply result from a biomass allocation trade-off, although a twig size constraint may provide an alternative mechanism.Key words: Allometry, trade-off, leafing intensity, leaf size, leaf habit, leaf form  相似文献   

3.
刘长柱  郭强  池秀莲 《植物学报》2015,50(2):234-240
叶片是植物的主要光合器官, 其质量与数量的权衡关系体现植物对环境的适应策略。在全球气候变化的背景下, 研究叶片质量与数量关系有助于理解植物对环境变化的响应趋势。该研究应用标准化主轴回归方法, 探讨了我国温带山地森林中48个常见树种的单叶干重与出叶强度的权衡关系。结果表明, 所有物种以及落叶阔叶林、常绿和落叶阔叶树种、单叶以及亚冠层阔叶树种的单叶干重与出叶强度表现为异速生长关系; 针叶林、针阔混交林、常绿及落叶针叶树种、复叶以及冠层阔叶树种则表现为等速生长关系。研究结果表明, 叶大小和出叶强度并无恒定的权衡关系。  相似文献   

4.
权衡关系是生活史对策理论的基础, 叶大小-数量的权衡关系对理解叶大小进化具有重要的意义。该研究以单叶面积和单叶片干重表示叶大小, 用小枝干重和小枝茎干重表示小枝大小, 采用标准化主轴估计(standardized major axis estimation, SMA)和系统独立比较分析(phylogenetically independent contrast analysis, PIC)的方法, 对浙江省清凉峰自然保护区3个不同海拔落叶阔叶木本植物当年生小枝内的叶大小与数量间的关系进行研究。结果显示, 无论叶大小和小枝大小是用面积或干重表示, 在每个海拔, 叶大小与出叶强度均存在显著的等速负相关关系, 表明在落叶阔叶木本植物中发现的叶大小与出叶强度之间的权衡关系在不同生境物种中是普遍存在的, 植物在叶大小方面的种间变化, 可能不是自然选择的直接产物, 而是叶片数量变化权衡关系的一个副产物。不同海拔间的比较显示, 高海拔物种的叶面积或干重与出叶强度相关关系的y轴截距比中、低海拔物种小, 表明在出叶强度一定的情况下, 高海拔物种比低海拔物种具有更小的叶大小。与高海拔物种相比, 中海拔物种的共同斜率沿共同主轴有一个向上的位移, 表明中海拔物种比高海拔物种具有更大的叶大小, 但出叶强度更小。这些结果表明生境对叶大小-数量的权衡关系具有显著的影响, 中海拔生境具有更适宜植物生长的气候及养分条件, 而高海拔的低温等不利影响使得叶片变小。  相似文献   

5.
Because leaf size scales negatively and isometrically with leaf number per shoot size (leafing intensity) in woody species, and because most tree and shrub species have small leaves, Kleiman and Aarssen (J Ecol 95:376–382, 2007) recently proposed that natural selection favors high leafing intensity resulting in small leaves, i.e., the leafing-intensity-premium hypothesis. However, empirical evidence for or against this hypothesis is still lacking. In addition, this hypothesis has not been examined in the context of how leaf size varies among habitats. To fill this void, we investigated leaf size frequency distributions of woody species from temperate China and explored the relationships among leaf mass, leaf number, and stem mass of current-year shoots of 133 woody species at low and high altitudes of three mountain ranges. The scaling relationships between leaf size and leafing intensity (leaf number per stem mass) were determined using both standardized major axis regression analyses and phylogenetically independent comparative techniques. In light of the leafing-intensity-premium hypothesis, we made three predictions: (1) leaf size frequency distributions should be right-skewed for each local study area and for the entire study region, (2) leafing intensities at different altitudes at different sites should differ while leafing intensities at comparable altitudes should be similar baring large taxonomic differences among sites, and (3) that leafing intensity should be higher for any given leaf size in habitats with small-leaved species. Significant negative and isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved independent of habitat type, both across species and across correlated evolutionary divergences. Within each mountain range or across the entire study region, leaf size frequency distributions were right-skewed, in accordance with our prediction. However, leafing intensity was smaller for any given leaf size at the altitude with smaller leafed species than for altitudes characterized by large leafed species, i.e., altitudes characterized by species with small leaves did not have consistently higher leafing intensities than other altitudes on each mountain range. Our analyses therefore indicate the direct adaptive value of leaf size but not the selective advantage in high leafing intensity as posited by the leafing-intensity-premium hypothesis. We suggest that this hypothesis explains less about the variation of leaf size among different habitats as it does about variation within habitats, i.e., the relative importance of the adaptive significance of leafing intensity and leaf size can and does vary with habitats.  相似文献   

6.
本文以胡杨(Populus euphratica Oliv.)为研究对象,采用标准化主轴回归估计(SMA)方法探讨了种群叶片大小(单叶面积、单叶质量)与出叶强度(基于小枝质量、茎质量、茎体积)的异速生长关系对地下水埋深梯度(Groundwater depth,GWD)的响应及其变化规律.结果显示:随GWD增加,胡杨当年...  相似文献   

7.
叶片大小与数量的权衡关系是植物生长策略的基础,研究叶片大小与数量权衡关系的内在机制对于深刻理解植物生长策略具有重要意义。本研究以单个叶片干重表示叶大小,以单位茎上的叶片数量表示出叶强度,采用标准主轴回归分析方法研究呼伦贝尔草原植物叶片大小与数量的权衡关系以及内在机制。结果表明: 陈旗嵯岗(典型草原)和陈旗八一(草甸草原)叶片大小与出叶强度存在显著的负的等速生长关系,谢尔塔拉(草甸草原)的叶片大小与出叶强度存在显著的负的异速生长权衡关系。叶片大小和数量权衡关系的内在机制取决于叶片与茎生物量的分配机制以及茎组织密度的变化。  相似文献   

8.
尚无证据表明顶端优势强的物种存在广义顶端优势潜在“成本”  相似文献   

9.
We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5–48 days) while new leaves of Larrea species emerged gradually (128–258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October–late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.  相似文献   

10.
Aims Plants control leaf phenology to maximize annual photosynthetic product. Although ferns play an important ecological role in many habitats, especially forests, their phenology traits have been poorly studied. Here, we investigate the leaf phenology of two ferns of the forest understorey and analyse the relationship between the timing of leaf emergence and spore dispersal and the effect of between-year climatic variation.Methods We compared the leafing and sporing phenologies of two ferns with very large (>2 m), overwintering leaves: Culcita macrocarpa and Woodwardia radicans. We regularly monitored individuals of six populations in the northwestern Iberian Peninsula during a 3-year study. We studied eight phenology variables: leafing start date, leafing end date, leaf expansion time, number of new leaves per individual, between-individual synchrony, within-individual synchrony, percentage of fertile leaves and spore release date. We also determined leaf mass per area (LMA) and gathered data on air temperature and humidity.Important findings Both C. macrocarpa and W. radicans produce few leaves (~2 leaves individual-1 year-1), which expand simultaneously for a very long period (from midwinter to early summer), are retained for more than 1 year (37 and 19 months, respectively) and have relatively high LMAs. Such traits, together with large leaf size, have also been found in seed plants from the forest understorey and represent adaptations to this light-limited environment. Spores of both study ferns are simultaneously released in late winter, with little between-year variation caused by differences in air humidity. This remarkable similarity between species suggests that the convergence in timing of leaf emergence favours the convergence in timing of spore dispersal.  相似文献   

11.
全球气候变暖强烈影响树线交错带植物的生活史策略,异龄叶大小-出叶强度权衡关系是常绿植物生活史策略的重要内容。以川西树线交错带的岷江冷杉(Abies faxoniana)幼苗为例,研究气候变暖对异龄叶大小与出叶强度关系的影响。通过开顶箱(Open-top chamber, OTC)对川西王朗自然保护区树线交错带的岷江冷杉进行模拟增温,采用标准化主轴估计(Standardized major axis estimation, SMA)方法研究了叶大小(单叶质量、单叶面积)与出叶强度(基于茎生物量、茎体积)间异速生长关系对长期增温的响应及其年际变化。结果表明:使用不同参数表征叶大小与出叶强度得到的结果存在差异;多年生小枝上存在单叶质量-出叶强度的负等速权衡关系,共同主轴随小枝年龄增加而向下漂移;长期增温并不影响单叶质量与出叶强度的异速生长关系,不同年龄小枝的异速生长常数对增温具有差异性响应。增温处理中当年生小枝在相同单叶质量下的出叶强度更低,以换取叶片总数的增加,使小枝具有更大的可塑性而适应增温。本研究提供了岷江冷杉幼苗协调异龄叶大小与出叶强度从而适应长期增温的证据,为评估树木生长随气候变化而加速提供了理论参考。  相似文献   

12.
The maximum leaf surface temperatures (MLSTs) of 126 species of higher plants were measured by means of an infrared thermometer, in the Inland Sea area, southwest of Honshu-Island, Japan, where plants suffered from severe environmental conditions due to an abnormally small amount of precipitation during the summer of 1978. The MLSTs of plants in the summer of 1978 were greater than or equal to those of 1979, when the environmental conditions were not so severe. The MLST measured in this study was 50.4 C for a non-succulent plant (Liriodendron), and 53.1 C for a succulent plant (Agave). Plants with different life forms appeared to have different MLSTs. The average of the MLSTs of conifers deciduous trees, and evergreens were 36.4, 37.7, and 40.3 C, respectively. This order corresponds to the distribution of forests from high to low, latitudes. Also the MLSTs were higher for woody plants than for herbaceous plants. Relatively high leaf temperatures were observed for climbing plants, both herbaceous and woody. Plants with narrow leaves had lower leaf surface temperatures than those with borad leaves. Herbaceous dicotyledonous plants actively growing at the end of the summer of 1978, in full sun at Hiroshima Castle were exclusively those with relatively high leaf temperatures.  相似文献   

13.
该研究以雌雄异株植物罗汉松(Podocarpus macrophyllus)成熟叶为研究材料,采用光学显微镜、扫描电镜和透射电镜观察比较罗汉松雌、雄植株叶在形态、显微结构和超显微结构的差异,以明确罗汉松雌、雄株在进化过程中叶对环境功能的适应性。结果显示:(1)罗汉松雌株的叶片大于雄株,且两者的叶长、叶宽和叶柄长差异极显著,而叶柄厚、叶面积、叶体积、叶质量、比叶重(SLW)、面积与体积之比(A/V)等性状无显著差异。(2)雌株叶片的气孔相对较大,密度较高,且雌株气孔宽度极显著大于雄株;雌株叶片的上表皮长细胞宽度和下表皮短细胞宽度均显著大于雄株,但雌株叶片的上表皮长细胞和短细胞的长度则显著小于雄株。(3)罗汉松雌株叶片的栅栏组织厚度、海绵组织厚度、传输组织长度和宽度、上下角质层厚度、维管束厚度、叶片紧密度(CTR)及疏松度(SR)均极显著大于雄株,而雌株的下表皮厚度极显著小于雄株,但雌雄株叶片的上表皮细胞厚度和栅海比差异不显著;雌株叶片的栅栏组织细胞、叶绿体和线粒体均较雄株的长而细,且雌株的线粒体宽度极显著小于雄株。(4)罗汉松雌株叶片上表皮蜡质饰纹、下表皮角质层纹饰、气孔外拱盖纹饰及内缘类型等4个微形态特征与雄株差异明显。(5)叶表皮蜡质层能谱分析表明,罗汉松雌株叶片含有9种元素,而雄株叶片仅有8种(缺少K元素);且雌株的Si元素含量高于雄株,而雄株的C、O、Na、Mg、Al、Ca和Au元素含量均高于雌株。研究表明,罗汉松雌、雄植株之间存在明显的第二性征,雌株叶片结构有助于提高光合等性能以满足生殖需求;罗汉松雌、雄株叶形态结构的差异是其长期进化形成的有利于物种繁衍的适应策略。  相似文献   

14.
Aims In most natural plant populations, there is a strong right-skewed distribution of body sizes for reproductive plants—i.e. the vast majority are relatively small, suppressed weaklings that manage not just to survive effects of crowding/competition and other hazards but also to produce offspring. Recent research has shown that because of their relatively large numbers, these relatively small resident plants collectively contribute most of the seed offspring production available for the population in the next generation. However, the success of these offspring will depend in part on their quality, e.g. reflected by seed size and resource content. Accordingly, in the present study, we used material from natural populations of herbaceous species to test the null hypothesis that there is no significant relationship between body size variation in resident plants—resulting from between-site variation in the intensity of crowding/competition—and variation in the mass or N content of their individual seeds.Methods Using populations of 56 herbaceous species common in eastern Ontario, total above-ground dry plant mass, mean mass per seed and mean nitrogen (N) content per seed were recorded for a sample of the largest resident plants and also for the smallest reproductive plants growing in local neighbourhoods with the most severe crowding/competition from near neighbours.Important findings Mass per seed was numerically smaller from the smallest resident plants for most study species, but with few exceptions, this was not significantly different (P> 0.05) from mass per seed from the largest resident plants. The results therefore showed no general effect of maternal plant body size on individual seed mass, or N content. This suggests that the reproductive output of the smaller half of the resident plant size distribution within these populations is likely to contribute not just most of the seed production available for the next generation but also seed offspring that are just as likely—on a per individual basis—to achieve seedling/juvenile recruitment success as the seed offspring produced by the largest resident plants. This conflicts with the traditional 'size-advantage' hypothesis for predicting plant fitness under severe competition, and instead supports the recent 'reproductive-economy-advantage' hypothesis, where competitive fitness is promoted by capacity to produce offspring that—despite severe body size suppression imposed by neighbour effects—in turn have capacity to produce grand-offspring.  相似文献   

15.
探究地形变化对不同生活型植物叶功能性状的影响有助于深入理解森林群落物种组成的维持特征。该研究以湖北星斗山常绿落叶阔叶混交林为研究对象, 测量了50个样地中224种木本植物的叶面积、叶厚度、叶干质量、叶干物质含量和比叶面积, 运用单因素方差分析揭示了乔木、灌木和木质藤本的叶功能性状变异特征, 并采用偏曼特尔检验分别从群落水平和物种水平分析了地形变化对不同生活型木本植物叶功能性状的影响。研究发现: 不同生活型植物叶性状变异系数分布范围为23.42%-110.45%; 不同生活型之间的植物叶功能性状差异明显。群落水平上, 海拔与乔木叶干质量、灌木叶面积和木质藤本叶厚度显著正相关, 坡度仅对灌木和木质藤本比叶面积具有显著影响, 坡向与灌木叶厚度、叶干质量和比叶面积显著正相关。物种水平上, 海拔比坡度和坡向对植物叶功能性状影响更为显著, 且不同物种对地形变化的敏感度不一致; 在控制空间结构影响后, 地形因子对植物叶功能性状的影响降低。该研究结果表明, 不同生活型植物的叶功能性状对地形变化的响应格局不同, 这可能是星斗山常绿落叶阔叶混交林植物多样性的主要维持机制。  相似文献   

16.
为了分析竹子枝-叶大小间的权衡关系,本研究对武夷山不同海拔典型竹种(毛竹、箬竹、肿节少穗竹、毛竿玉山竹和武夷山玉山竹)小枝的叶片总质量、茎质量、单叶质量和出叶强度等性状进行测定.结果表明: 随海拔升高,5个竹种间小枝上总叶质量与茎质量的异速生长指数呈显著下降趋势.竹种内,毛竹、箬竹和肿节少穗竹总叶质量与茎质量在不同海拔上均拥有共同异速生长指数(分别为0.94、0.85、0.84).毛竿玉山竹和武夷山玉山竹的叶茎质量也存在共同异速生长指数(0.79).除武夷山玉山竹外,竹子单叶质量与出叶强度之间均呈显著的负相关关系.5个竹种的单叶质量和出叶强度之间存在共同异速生长指数-1.12.总之,竹类植物的小枝总体上倾向于在低海拔环境中着生更多的叶片,而在高海拔生境下则投资更多的生物量到茎的构造上.尽管竹种间小枝的茎投资随海拔升高而增加,但其基于茎质量的出叶强度策略取决于叶片大小的构建而不是海拔生境差异.  相似文献   

17.
The idea that herbaceous plants have higher relative growth rates (RGRs) compared with woody plants is fundamental to many of the most influential theories in plant ecology. This difference in growth rate is thought to reflect systematic variation in physiology, allocation and leaf construction. Previous studies documenting this effect have, however, ignored differences in seed mass. As woody species often have larger seeds and RGR is negatively correlated with seed mass, it is entirely possible the lower RGRs observed in woody species is a consequence of having larger seeds rather than different growth strategies. Using a synthesis of the published literature, we explored the relationship between RGR and growth form, accounting for the effects of seed mass and study-specific effects (e.g. duration of study and pot volume), using a mixed-effects model. The model showed that herbaceous species do indeed have higher RGRs than woody species, and that the difference was independent of seed mass, thus at all seed masses, herbaceous species on average grow faster than woody ones.  相似文献   

18.
1. The pattern of attack by the leaf‐galling insect Neopelma baccharidis (Homoptera: Psyllidae) was studied in three populations of the dioecious shrub Baccharis dracunculifolia (Asteraceae) in south‐eastern Brazil. The plant vigour hypothesis, which predicts higher rates of attack and increased herbivore performance on the longest plant shoots, was tested. This work also provides further information for the study of differential herbivory in dioecious plants. 2. In total, 9200 shoots were collected randomly from 46 male and 47 female plants belonging to the three populations. Shoot length, number of leaves per shoot, rate of galling, and survival of psyllids did not differ between male and female plants. Another population on the Campus of the Federal University of Minas Gerais was used only to determine the pattern of shoot growth. 3. The hypothesis of sex‐mediated herbivory was not corroborated in this study. 4. The frequency of galling increased with increasing shoot length, as predicted by the plant vigour hypothesis. Nevertheless, the number of oviposition sites (leaf buds) increased with shoot length. 5. The performance of the galling herbivore was not related to shoot length in the plant populations studied. 6. In conclusion, Neopelma baccharidis did not select shoots based on length only.  相似文献   

19.
In plant leaves, resource use follows a trade‐off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light‐interception borne by plants. We conducted a broad‐scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.  相似文献   

20.
《植物生态学报》2014,38(7):665
Aims The size and quantity relationships between twigs and leaves can be used to describe the hydraulic properties of plants in response to environmental stresses. The objective of this study was to examine how twig-leaf relationship would vary with changes in micro-habitat conditions.
Methods The study site is located in the Tiantong National Forest Park (29.87° N, 121.65° E), Zhejiang Province. We measured twig cross-sectional area (twig size), sub-twig cross-sectional area (sub-twig size), individual leaf area, total leaf area (leaf size per twig), the number of twigs at a given twig size (twig intensity), and the number of leaves at a given twig size (leafing intensity) across individual woody plants on 10 plots in each of the convex and concave habitats within an evergreen broad-leaved forest. The standardized major axis (SMA) analysis was conducted to determine the scaling relationships between twig size and leaf size, between sub-twig size and twig intensity, and between leaf size and leafing intensity.
Important findings Significant, positive allometric relationships between twig cross-sectional area and total leaf area were found in plants in both types of micro-habitats (p < 0.001). There was no significant difference between the two micro-habitats in the slope of the regression between twig cross-sectional area and total leaf area, and the common slope of the regressions was significantly greater than 1 (p < 0.001). The intercept was significantlygreater in plants of the concave habitat than in plants of the convex habitat (p < 0.001), indicating that plants in a concave habitat support greater total leaf area at a given twig size than in a convex habitat. Significant, negative allometric scaling relationships were found between twig size and twig intensity in plants in both micro-habitats. There was also no significant difference between the two habitats in the slope of the regression between twig size and twig intensity, and the common slope of the regressions was significantly less than –1 (p < 0.001). The similar intercept in the regression relationship of twig area and twig intensity between the two habitats suggests that plants deploy similar amount of sub-twigs per twig size in both types of habitat. In addition, significant, negative allometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved across micro-habitat types, with the common slope being smaller than –1. A higher value of y-intercept in the scaling relationships of leaf area vs. leafing intensity for plants in the concave habitat indicates that at a given leaf area, more leaves were supported by plants in a concave habitat than in a convex habitat. Overall, plants in a concave habitat tend to deploy more large leaves per twig size than those in a convex habitat. This study demonstrated that both the Corner’s rules and the leaf size-number trade-offs could be generalized to apply at the small local spatial scales. The magnitude and quantitative adjustment of twig-leaf deployment manifests a selection preference of hydraulic properties of plants in coping with changes in water availability between concave and convex habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号