首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The generality of leaf size versus number trade-off in temperate woody species
Authors:Yang Dongmei  Li Guoyong  Sun Shucun
Institution:1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;2Department of Biology, Nanjing University, Nanjing 210093, China
Abstract:

Background and Aims

Trade-offs are fundamental to life-history theory, and the leaf size vs. number trade-off has recently been suggested to be of importance to our understanding leaf size evolution. The purpose of the present study was to test whether the isometric, negative relationship between leaf size and number found by Kleiman and Aarssen is conserved between plant functional types and between habitats.

Methods

Leaf mass, area and number, and stem mass and volume of current-year shoots were measured for 107 temperate broadleaved woody species at two altitudes on Gongga Mountain, south-west China. The scaling relationships of leaf size (leaf area and mass) vs. (mass- and volume-based) leafing intensity were analysed in relation to leaf habit, leaf form and habitat type. Trait relationships were determined with both a standardized major axis method and a phylogenetically independent comparative method.

Key Results

Significant negative, isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. In particular, about 99 % of the variation in leaf mass across species could be accounted for by proportional variation in mass-based leafing intensity. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, evergreen species had a lower y-intercept in the scaling relationships of leaf area vs. leafing intensity than deciduous species. This indicated that leaf area was smaller in the evergreen species at a given leafing intensity than in the deciduous species. The compound-leaved deciduous species were observed usually to have significant upper shifts along the common slopes relative to the simple-leaved species, which suggested that the compound-leaved species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes.

Conclusions

The negative, isometric scaling relationship between leaf size and number is largely conserved in plants, while the leaf size vs. number trade-off can be mediated by leaf properties. The isometry of the leaf size vs. number relationship may simply result from a biomass allocation trade-off, although a twig size constraint may provide an alternative mechanism.Key words: Allometry, trade-off, leafing intensity, leaf size, leaf habit, leaf form
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号