首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Bark of Quercus coccifera is widely used in folk medicine. We tested tyrosinase and α-glucosidase inhibitory effects of Q. coccifera bark extract and isolated compounds from it. The extract inhibited tyrosinase with an IC50 value of 75.13 ± 0.44 µg/mL. Among the isolated compounds, polydatin (6) showed potent tyrosinase inhibition compared to the positive control, kojic acid, with an IC50 value of 4.05 ± 0.30 µg/mL. The Q. coccifera extract also inhibited α-glucosidase significantly with an IC50 value of 3.26 ± 0.08 µg/mL. (-)-8-Chlorocatechin (5) was the most potent isolate, also more potent than the positive control, acarbose, with an IC50 value of 43.60 ± 0.67 µg/mL. According to the kinetic analysis, 6 was a noncompetitive and 5 was a competitive inhibitor of tyrosinase, and 5 was a noncompetitive α-glucosidase inhibitor. In the light of these findings, we performed in silico molecular docking studies for 5 and 6 with QM/MM optimizations to predict their tyrosinase inhibition mechanisms at molecular level and search for correlations with the in vitro results. We found that the ionized form of 5 (5i) showed higher affinity and more stable binding to tyrosinase catalytic site than its neutral form, while 6 bound to the predicted allosteric sites of the enzyme better than the catalytic site.  相似文献   

2.
The inhibition of tyrosinase is an established strategy for treating hyperpigmentation. Our previous findings demonstrated that cinnamic acid and benzoic acid scaffolds can be effective tyrosinase inhibitors with low toxicity. The hydroxyl substituted benzoic and cinnamic acid moieties of these precursors were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase. The most active compound, (2-(3-methoxyphenoxy)-2-oxoethyl (E)-3-(4-hydroxyphenyl) acrylate) 6c, inhibited tyrosinase with an IC50 of 5.7 µM, while (2-(3-methoxyphenoxy)-2-oxoethyl 2, 4-dihydroxybenzoate) 4d had an IC50 of 23.8 µM. In comparison, the positive control, kojic acid showed tyrosinase inhibition with an IC50 = 16.7 µM. Analysis of enzyme kinetics revealed that 6c and 4d displayed noncompetitive reversible inhibition of the second tyrosinase enzymatic reaction with Ki values of 11 µM and 130 µM respectively. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the catalytic site for these active compounds. The phenolic para-hydroxy group of the most active compound 6c is predicted to interact with the catalytic site Cu++ ion. The methoxy part of this compound is predicted to form a hydrogen bond with Arg 268. Compound 6c had no observable toxic effects on cell morphology or cell viability at the highest tested concentration of 91.4 µM. When dosed at 91.4 µM onto B16F10 melanoma cells in vitro 6c showed anti-melanogenic effects equivalent to kojic acid at 880 µM. 6c displayed no PAINS (pan-assay interference compounds) alerts. Our results show that compound 6c is a more potent tyrosinase inhibitor than kojic acid and is a candidate for further development. Our exposition of the details of the interactions between 6c and the catalytic pocket of tyrosinase provides a basis for rational design of additional potent inhibitors of tyrosinase, built on the cinnamic acid scaffold.  相似文献   

3.
Tyrosinase enzyme plays a crucial role in melanin biosynthesis and enzymatic browning process of vegetables and fruits. A series of veratric acid derivatives containing benzylidene-hydrazine moieties with different substitutions were synthesized and their inhibitory effect on mushroom tyrosinase and free radical scavenging activity were evaluated. The results indicated that N′-(4-chlorobenzylidene)-3,4-dimethoxybenzohydrazide (D5) and N′-(2,3-dihydroxybenzylidene)-3,4-dimethoxybenzohydrazide (D12) showed the highest tyrosinase inhibitory activity with IC50 values of 19.72 ± 1.84 and 20.63 ± 0.79 μM, respectively, that were comparable with the IC50 value of kojic acid (19.08 ± 1.21 μM). D12 was also a potent radical scavenger with EC50 value of 0.0097 ± 0.0011 mM. The free radical scavenging activity of D12 was comparable with the standard quercetin. The inhibition kinetic analyzed by Lineweaver-Burk plots revealed that compound D5 was a competitive tyrosinase inhibitor. Molecular docking study was carried out for the derivatives demonstrating tyrosinase inhibitory activity. D5 and D12 possessed the most negative estimated free energies of binding in mushroom tyrosinase active site. Therefore, D5 and D12 could be introduced as potent tyrosinase inhibitors that might be promising leads in medicine, cosmetics and food industry.  相似文献   

4.
During our continued search for strong skin whitening agents over the past ten years, we have investigated the efficacies of many tyrosinase inhibitors containing a common (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which we found to be essential for the effective inhibition of mushroom and mammalian tyrosinases. In this study, we explored the tyrosinase inhibitory effects of 2,3-diphenylacrylic acid (2,3-DPA) derivatives, which also possess the (E)-β-phenyl-α,β-unsaturated carbonyl motif. We synthesized fourteen (E)-2,3-DPA derivatives 1a1n and one (Z)-2,3-DPA-derivative 1l′ using a Perkin reaction with phenylacetic acid and appropriate substituted benzaldehydes. In our mushroom tyrosinase assay, 1c showed higher tyrosinase inhibitory activity (76.43 ± 3.53%, IC50 = 20.04 ± 1.91 µM) with than the other 2,3-DPA derivatives or kojic acid (21.56 ± 2.93%, IC50 = 30.64 ± 1.27 μM). Our mushroom tyrosinase inhibitory results were supported by our docking study, which showed compound 1c (−7.2 kcal/mole) exhibited stronger binding affinity for mushroom tyrosinase than kojic acid (−5.7 kcal/mole). In B16F10 melanoma cells (a murine cell-line), 1c showed no cytotoxic effect up to a concentration of 25 μM and exhibited greater tyrosinase inhibitory activity (68.83%) than kojic acid (49.39%). In these cells, arbutin (a well-known tyrosinase inhibitor used as the positive control) only inhibited tyrosinase by 42.67% even at a concentration of 400 μM. Furthermore, at 25 µM, 1c reduced melanin contents in B16F10 melanoma cells by 24.3% more than kojic acid (62.77% vs. 38.52%). These results indicate 1c is a promising candidate treatment for pigmentation-related diseases and potential skin whitening agents.  相似文献   

5.
Two series of novel kojic acid analogues (4aj) and (5ad) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35 ± 2.15–17.50 ± 2.75 μM, whereas standard inhibitor kojic acid have IC50 values 20.00 ± 1.08 μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35 ± 2.15 μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.  相似文献   

6.
The enzyme tyrosinase plays a vital role in melanin biosynthesis and enzymatic browning of vegetables and fruits. A series of novel quinolinyl thiourea analogues (11a-j) were synthesized by reaction of 3-aminoquinoline and corresponding isothiocyanates, in moderate to excellent yields with different substitutions and their inhibitory effect on mushroom tyrosinase and free radical scavenging activity were evaluated. The compound N-(quinolin-3-ylcarbamothioyl)hexanamide (11c) exhibited the maximum tyrosinase inhibitory effect (IC50 = 0.0070 ± 0.0098 µM) compared to other derivatives and the reference Kojic acid (IC50 = 16.8320 ± 0.0621 µM). The docking studies were carried out and the compound (11c) showed most negative estimated free energy of −7.2 kcal/mol in mushroom tyrosinase active site. The kinetic analysis revealed that the compound (11c) inhibits the enzyme tyrosinase non-competitively to form the complex of enzyme and inhibitor. The results revealed that 11c could be identified as putative lead compound for the design of efficient tyrosinase inhibitors.  相似文献   

7.
The role of aldose reductase (ALR2) in diabetes mellitus is well-established. Our interest in finding ALR2 inhibitors led us to explore the inhibitory potential of new thiosemicarbazones. In this study, we have synthesized adamantyl-thiosemicarbazones and screened them as aldehyde reductase (ALR1) and aldose reductase (ALR2) inhibitors. The compounds bearing phenyl 3a, 2-methylphenyl 3g and 2,6-dimethylphenyl 3m have been identified as most potent ALR2 inhibitors with IC50 values of 3.99 ± 0.38, 3.55 ± 0.26 and 1.37 ± 0.92 µM, respectively, compared with sorbinil (IC50 = 3.14 ± 0.02 μM). The compounds 3a, 3g, and 3m also inhibit ALR1 with IC50 value of 7.75 ± 0.28, 7.26 ± 0.39 and 7.04 ± 2.23 µM, respectively. Molecular docking was also performed for putative binding of potent inhibitors with target enzyme ALR2. The most potent 2,6-dimethylphenyl bearing thiosemicarbazone 3m (IC50 = 1.37 ± 0.92 µM for ALR2) and other two compound 3a and 3g could potentially lead for the development of new therapeutic agents.  相似文献   

8.
Flavonoids are main polyphenolic groups widely distributed to fruits, vegetables and beverages we consumed daily. They exhibit many biological effects. We tested tyrosinase inhibitor potential of structurally related (19) flavonoids and found that all the tested materials possessed tyrosinase inhibitory effect compared to the positive control, kojic acid. 2 exhibited the strongest tyrosinase inhibitory effect with an IC50 value of 40.94 ± 0.78 µM in a competitive manner. According to kinetic analysis 1, 4 and 7 were found to be competitive inhibitors, 3, 5, and 6 noncompetitive inhibitors of tyrosinase. According to the docking studies, A and C ring of the flavonoid structure, hydroxyl substituent at the 7th position, and hydroxyl substituents at para or para and meta position of ring B play key role for competitive inhibition of the enzyme.  相似文献   

9.
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the β-phenyl-α, β-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a1m, which all possessed the (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the “(E)”-β-phenyl-α, β-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50?=?32.08?±?2.25?μM for 1c; IC50?=?14.62?±?1.38?μM for 1m; and IC50?=?37.86?±?2.21?μM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme’s active site. In silico docking simulation supported binding of 1m (?7.6?kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (?5.7?kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the β-phenyl-α, β-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.  相似文献   

10.
Current study deals with the evaluation of indane-1,3-dione based compounds as new class of urease inhibitors. For that purpose, benzylidine indane-1,3-diones (130) were synthesized and fully characterized by different spectroscopic techniques including EI-MS, HREI-MS, 1H, and 13C NMR. All synthetic molecules 130 were evaluated for urease inhibitory activity and showed good to moderate inhibitory potential within the range of (IC50 = 11.60 ± 0.3–257.05 ± 0.7 µM) as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Compound 1 (IC50 = 11.60 ± 0.3 µM) was found to be most potent inhibitor amongst all derivatives. The key binding interactions of most active compounds within the enzyme pocket were evaluated through in silico studies.  相似文献   

11.
New twenty compounds bearing thiazole ring (3a-3t) were designed and synthesized as monoamine oxidase (MAO) inhibitors. The fluorometric enzyme inhibition assay was used to determine the biological effects of synthesized compounds. Most of them showed remarkable inhibitory activity against both MAO-A and MAO-B. By comparing their IC50 values, it can be seen that active derivatives displayed generally selectivity on MAO-B enzyme. Compounds 3j and 3t, which bear dihydroxy moiety at the 3rd and 4th position of phenyl ring, were the most active derivatives in the series against both isoenzymes. Compounds 3j and 3t showed significant inhibition profile on MAO-A with the IC50 values of 0.134 ± 0.004 µM and 0.123 ± 0.005 µM, respectively, while they performed selectivity against MAO-B with the IC50 values of 0.027 ± 0.001 µM and 0.025 ± 0.001 µM, respectively. Also, docking studies about these compounds were carried out to evaluate their binding modes on the active regions of MAO-A and MAO-B.  相似文献   

12.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   

13.
A novel series of 5,6-dichloro-2-methyl-1H-benzimidazole derivatives was synthesized and then screened for their urease inhibitory activity. All compounds showed more potent inhibitory activity in the range of IC50 = 0.0294 ± 0.0015–0.1494 ± 0.0041 µM than thiourea (IC50 = 0.5117 ± 0.0159 µM), as a reference inhibitor. Among all the tested compounds, the compound 15 (IC50 = 0.0294 ± 0.0015 µM) having strong electron-withdrawing nitro group on the phenyl ring was recorded as the most potent inhibitor of urease. All compounds were docked at the active sites of the Jack bean urease enzyme to investigate the reason of the inhibitory activity and the possible binding interactions of enzyme-ligand complexes.  相似文献   

14.
Here a new class of hydroxy- or methoxy-substituted 5-benzylidene(thio)barbiturates were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that several compounds had more potent tyrosinase inhibitory activities than the widely used tyrosinase inhibitor kojic acid (IC50 = 18.25 μM). In particular, 3′,4′-dihydroxylated 1e was found to be the most potent inhibitor with IC50 value of 1.52 μM. The inhibition mechanism analysis revealed that the potential compounds 1e and 2e exhibited such inhibitory effects on tyrosinase by acting as the irreversible inhibitors. Structure–activity relationships’ (SARs) analysis also suggested that further development of such compounds might be of interest.  相似文献   

15.
A new series of quinazolinone derivatives containing triazole, thiadiazole, thiosemicarbazide functionalities was synthesized and then screened for their in vitro urease inhibition properties. Most of the compounds showed excellent activity with IC50 values ranging between 1.88 ± 0.17 and 6.42 ± 0.23 µg/mL, compared to that of thiourea (IC50 = 15.06 ± 0.68) and acetohydroxamic acid (IC50 = 21.03 ± 0.94), as reference inhibitors. Among the synthesized molecules, compounds 5c, 5e and 5a showed the best inhibitory effect against urease enzyme with IC50 values of 1.88 ± 0.17 µg/mL, 1.90 ± 0.10 and 1.96 ± 0.07 µg/mL, respectively. Moreover in order to give better understanding of the inhibitory activity of synthesized compounds, molecular docking studies were applied at the target sites of jack bean urease enzyme (JBU). Their binding poses and energy calculations were analyzed using induced fit docking (IFD) and prime-MMGBSA tool. Binding poses of studied compounds were determined using induced fit docking (IFD) algorithms.  相似文献   

16.
In the course of a primary screening of 614 microbial actinomycete extracts for the discovery of tyrosinase inhibitors, the EtOAc extract of the fermentation broth of the strain Streptomyces sp. CA-129531 isolated from a Martinique sample, exhibited in cell free and cell-based assays the most promising activity (IC50 value of 63 μg/mL). Scaled-up production in a bioreactor led to the isolation of one new trichostatic acid analogue, namely trichostatic acid B (1), along with six known trichostatin derivatives (27), four diketopiperazines (811), two butyrolactones (1213) and one hydroxamic acid siderophore (14). Among them, trichostatin A (4) showed a Ki value of 6.1 μM and six times stronger anti-tyrosinase activity (IC50 2.18 μΜ) than kojic acid (IC50 14.07 μΜ) used as a positive control. Deoxytrichostatin A (6) displayed also strong inhibitory activity against tyrosinase (IC50 19.18 μΜ). Trichostatin A production in bioreactor started together with the exponential phase of growth (day 4) and the maximum concentration was reached at day 9 (2.67 ± 0.13 μg/mL). Despite the cytotoxicity of some individual components, the EtOAc extract showed no cytotoxic effect on HepG2, A2058, A549, MCF-7 and MIA PaCa-2 cell lines, (IC50 >2.84 mg/mL) and against BG fibroblasts at the concentrations where the whitening effect was exerted, reassuring its safety and great tyrosinase inhibitory potential.  相似文献   

17.
Tyrosinase inhibitors have become increasingly important as whitening agents and for the treatment of pigmentary disorders. In this study, the synthesis of kojic acid derivatives having 2-substituted-3-hydroxy-6-hyroxymethyl/chloromethyl/methyl/morpholinomethylpiperidinyl- methyl/pyrrolidinylmethyl-4H-pyran-4-one structure (compounds 130) with inhibitory effects on tyrosinase enzyme were described. One-pot Mannich reaction was carried out by using kojic acid/chlorokojic acid/allomaltol and substituted benzylpiperazine derivatives in presence of formaline. Subsequently, cyclic amine (morpholine, piperidine and pyrrolidine) derivatives of the 6th-position of chlorokojic acid were obtained with nucleophilic substitutions in basic medium. The structures of new compounds were identified by FT-IR, 1H- and 13C NMR, ESI-MS and elemental analysis data. The potential mushroom tyrosinase inhibitory activity of the compounds were evaluated by the spectrophotometric method using l-DOPA as a substrate and kojic acid as the control agent. The potential inhibitory activity was also investigated in silico using molecular docking simulation method. Tyrosinase inhibitory action was significantly more efficacious for several compounds (IC50: 86.2–362.1 µM) than kojic acid (IC50: 418.2). Compound 3 bearing 3,4-dichlorobenzyl piperazine moiety was proven to have the highest inhibitory activity. The results of docking studies showed that according to the predicted conformation of compound 3 in the enzyme binding site, hydroxymethyl group provides a metal complex with copper ions and enzyme. Thus, this interaction explain the high inhibitory activities of the compounds 1, 3 and 4 possessing hydroxymethyl substituent supporting the mushroom assay results with docking studies. In accordance with the results, it is suggested that Mannich bases of kojic acid bearing substituted benzyl piperazine groups (compounds 1, 3, 4, 11, 13, 14, 23, 24, 28, and 29) could be promising antityrosinase agents. Additionally, considering the relationship between tyrosinase inhibitory activity results and molecular docking, a new tyrosinase inhibition mechanism can be proposed.  相似文献   

18.
A new series of alkynyl glycoside analogues were designed and synthesized from cheap and a commercially available sugar by introduction of various alkynyl and alkyl groups at C-1 and C-6 positions of the sugar ring. The inhibitory abilities of alkynyl glycosides were investigated in vitro on mushroom tyrosinase for the catalysis of l-Tyrosine and l-DOPA as substrates and comparing with arbutin and kojic acid. Non-terminal alkyne compound 2d showed excellent tyrosinase inhibitory activity (IC50 54.0 μM) against l-Tyrosine comparable to arbutin (IC50 1.46 mM) while 2b exhibited potent activities (IC50 34.3 μM) against L-DOPA higher than kojic acid (IC50 0.11 mM) and arbutin (IC50 13.3 mM). Kinetic studies revealed that compound 2d was a non-competitive inhibitor with the best Ki value of 21 μM and formed an irreversible receptor complex with mushroom tyrosinase. The SARs results showed that the type of alkyne and alkyl groups at position C-6 on sugar and the stereoisomer played an important role in determining their inhibitory activities. The potent activity of alkynyl glycosides identified in this study highlight the importance of this scaffold and these compounds are very modestly potent to the development of new class for tyrosinase inhibitor.  相似文献   

19.
A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC50 value 0.00458 ± 0.00022 μM compared with the IC50 value of kojic acid is 16.84 ± 0.052 μM. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (−10.20 kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

20.
In this work, we describe the preparation of some new Tacrine analogues modified with a pyranopyrazole moiety. A one-pot multicomponent reaction of 3-methyl-1H-pyrazol-5(4H)-one, aryl(or hetero)aldehydes, malononitrile and cyclohexanone involving a Friedländer condensation led to the title compounds. The synthesized heterocyclic analogues of this molecule were evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 0.044 to 5.80?µM, wherein compounds 5e and 5j were found to be most active inhibitors against AChE with IC50 values of 0.058 and 0.044?µM respectively. Molecular modeling simulation on AChE and BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号