首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel chiral Ru(II) complexes [Ru(bpy)2L]2+ (bpy = 2,2-bipyridine; L: o-mopip = 2-(2-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline, p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline) containing -OCH3 at different positions on the phenyl ring have been synthesized and characterized. The DNA-binding and DNA-photocleavage properties of the complexes were investigated. The theoretical calculations for these complexes were also carried out applying the density functional theory (DFT) method. The experimental results show that: both these two isomer complexes can bind to DNA in an intercalative mode; the DNA-binding affinity of [Ru(bpy)2(p-mopip)] 2 is greater than that of [Ru(bpy)2(o-mopip)] 1; moreover, the DNA-binding affinities of enantiomers delta-1 and delta-2 are all greater than those of lambda-1 and lambda-2, respectively. In addition, a very interesting finding is experimentally obtained, i.e. under a low [DNA]/[Ru] ratio, the emission intensities of delta-1 and lambda-1 are all weaker than those of delta-2 and lambda-2, however, upon a high [DNA]/[Ru] ratio, the emission intensities of both delta-1 and lambda-1 are stronger than those of delta-2 and lambda-2. Such a difference of the emission spectra can be interpreted by the electric effect of substituent on the intercalative ligand. The difference in DNA-binding affinities of these two isomeric complexes can also be reasonably explained by the DFT calculations.  相似文献   

2.
A series of enantiomerically pure polypyridyl ruthenium(II) complexes, delta- and lambda-[Ru(bpy)2 (HPIP)](PF6)2 (delta-1 and lambda-1; bpy=2,2'-bipyridine, HPIP = 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline), delta and lambda-[Ru(bpy)2(HNAIP)](PF6)2 (delta-2 and lambda-2; HNAIP = 2-(2-hydroxy-1-naphthyl)imidazo[4,5-f][1,10]phenanthroline), delta- and lambda-[Ru(bpy)2 (HNOIP)](PF6)2 (delta-3 and lambda-3; HNOIP = 2-(2-hydroxy-5-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline), and delta- and lambda-[Ru(bpy)2(DPPZ)](PF6)2 (delta-4 and lambda-4; DPPZ= dipyridophenazine), have been synthesized. Binding behavior of these chiral complexes to calf thymus DNA (CT-DNA) has been investigated by electronic absorption, steady-state emission, and circular dichroism spectroscopies, as well as by viscosity measurements and equilibrium dialysis binding studies. Several points came from the results. (1) The DNA-binding properties were distinctly different for the [Ru(bpy)2L]2+ (L=HPIP, HNAIP, HNOIP) series of ruthenium(II) complexes, which indicates that the photophysical behavior of the complexes on binding to DNA can be modulated through ligand design. (2) Different binding rates of individual enantiomers of complexes 1 and 4 to DNA were observed through dialysis experiments. The lambda enantiomer bound more rapidly than the lambda enantiomer and their different intercalative binding geometries were suggested to be responsible. (3) Both delta-2 and lambda-2 bound weakly to CT-DNA; delta-2 may bind through a partial intercalation mode, whereas lambda-2 may bind in the DNA groove. (4) There was no noticeable enantioselectivity for complexes 1, 3, and 4 on binding to CT-DNA. Both of their enantiomers can intercalate into DNA base pairs. It is noted that delta-3 and lambda-3 exhibited almost identical spectral changes on addition of CT-DNA, and a similar binding manner of the isomers to the double helix was proposed.  相似文献   

3.
A series of mixed-ligand ruthenium(II) complexes of the type [Ru(en)(2)bpy](2+) (bpy=2,2-bipyridine; 1), [Ru(en)(2)phen](2+) (phen=1,10-phenantroline; 2), [Ru(en)(2)IP](2+) (IP=imidazo[4,5-f][1,10]phenanthroline; 3), and [Ru(en)(2)PIP](2+) (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline; 4) have been isolated and characterized by UV/VIS, IR, and (1)H-NMR spectral methods. The binding of the complexes with calf thymus DNA has been investigated by absorption, emission spectroscopy, viscosity measurements, DNA melting, and DNA photo-cleavage. The spectroscopic studies together with viscosity measurements and DNA melting studies support that complexes 1 and 2 bind to CT DNA (=calf thymus DNA) by groove mode. Complex 2 binds more avidly to CT DNA than complex 1, complexes 3 and 4 bind to CT DNA by intercalation mode, 4 binds more avidly to CT DNA than 3. Noticeably, the four complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA.  相似文献   

4.
A new Ru(II) complex of [Ru(bpy)(2)(Hpip)](2+) {bpy = 2,2'bipyridine; Hppip = 2-(4-(pyridin-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)(2)(Hpip)](2+) {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}. The acid-base properties of [Ru(bpy)(2)(Hpip)](2+) studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)(2)(Hpip)](2+) that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) x 10(5) M-1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

5.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

6.
A novel ligand 2-(4'-phenoxy-phenyl)imidazo[4,5-f][1,10]phenanthroline (PPIP) and its complexes [Ru(bpy)(2)(PPIP)](2+) (1) (bpy = 2,2'-bipyridine) and [Ru(phen)(2)(PPIP)](2+) (2) (phen = 1,10-phenanthroline) have been synthesized and characterized by mass spectroscopy, (1)H NMR and cyclic voltammetry. The interaction of two complexes with calf thymus DNA (CT-DNA) was investigated by spectroscopic and viscosity measurements. The results suggest that both complexes bind to DNA via an intercalative mode. Both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA under irradiated.  相似文献   

7.
A series of enantiomeric polypyridyl ruthenium(II) complexes Delta- and Lambda-[Ru(bpy)2CNOIP](PF6)2 (Delta-1 and Lambda-1; BPY=2,2'-bipyridine, CNOIP=2-(2-chloro-5-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline), Delta- and Lambda-[Ru(bpy)2HPIP](PF6)2 (Delta-2 and Lambda-2; HPIP=2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline), Delta- and Lambda-[Ru(bpy)2DPPZ](PF6)2 (Delta-3 and Lambda-3; DPPZ=dipyrido[3,2:a-2',3':c]-phenazine), Delta- and Lambda-[Ru(bpy)2TAPTP](PF6)2 (Delta-4 and Lambda-4; TAPTP=4,5,9,18-tetraazaphenanthreno[9,10-b] triphenylene) have been synthesized. Binding of these chiral complexes to calf thymus DNA has been studied by spectroscopic methods, viscosity, and equilibrium dialysis. The experimental results indicated that all the enantiomers of these complexes bound to DNA through an intercalative mode, but the binding affinity of each chiral complex to DNA was different due to the different shape and planarity of the intercalative ligand. After binding to DNA, the luminescence property of complex 1 was distinctly different from complexes 2 to 4. Upon irradiation at 302 nm, complexes 2-4 were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form I to nicked form II, and obvious enantioselectively was observed on DNA cleavage for the enantiomers of complexes 2 and 4. The mechanisms for DNA cleavage by these enantiomeric complexes were also proposed.  相似文献   

8.
Two new ruthenium(II) complexes of [Ru(bpy)(pp[2,3]p)2](ClO4)2 and [Ru(phen)(pp[2,3]p)2](ClO4)(2) (bpy=2,2'-bipyridine, phen=1,10-phenanthroline, pp[2,3]p=pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline) have been synthesized and characterized by elemental analysis and 1H NMR spectra. The calf thymus DNA-binding properties of the two complexes were investigated by UV-visible and emission spectroscopy, competitive binding experiments with ethidium bromide and viscosity measurements. The results indicate that the two complexes intercalate between the base pairs of the DNA tightly with intrinsic DNA-binding constants of 3.08 x 10(6) and 6.53 x 10(6) M(-1) in buffered 50 mM NaCl, respectively, which are much larger than 6.9 x 10(5) M(-1) for [Ru(bpy)2(pp[2,3]p)](ClO4)2 containing two ancillary ligands of bpy.  相似文献   

9.
The ligand 2-(2-chloro-5-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline(CNOIP) and its complexes [Co(bpy)(2)(CNOIP)](3+) (1) and [Co(phen)(2)(CNOIP)](3+) (2) (bpy=2,2'-bipyridine; phen=1,10-phenanthroline) have been synthesized and characterized. Binding of the two complexes with calf thymus DNA has been investigated by spectroscopic methods, cyclic voltammetry, viscosity, and electrophoresis measurements. The experimental results indicate that both complexes bind to DNA through an intercalative mode. In comparison with their parent complexes containing PIP ligand (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline), the introduction of NO(2) and Cl groups to the PIP ligand decreased the binding affinity of complexes 1 and 2 to CT DNA. Both complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA, the hydroxyl radical (OH*) is suggested to be the reactive species responsible for the cleavage.  相似文献   

10.
The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy=2,2'-bipyridine and bbob=bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb=bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'-bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the Delta isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Lambda-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the Delta isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.  相似文献   

11.
A series of ruthenium(II) mixed ligand complexes of the type [Ru(NH(3))(4)(L)](2+), where L=imidazo[4,5-f][1,10]phenanthroline (ip), 2-phenylimidazo[4,5-f][1,10]phenanthroline (pip), 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (hpip), 4,7-diphenyl-1,10-phenanthroline (dip), naphtha[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione (qdppz), 5,18-dihydroxynaphtho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine (hqdppz), have been isolated and characterized. The interaction of these complexes with calf thymus DNA (CT DNA) has been explored by using absorption, emission, and circular dichroic spectral methods, thermal denaturation studies and viscometry. All these studies suggest the involvement of the modified phenanthroline 'face' rather than the ammonia 'face' of the complexes in DNA binding. An intercalative mode of DNA binding, which involves the insertion of the modified phenanthroline ligands in between the base pairs, is suggested. The results from absorption spectral titration and circular dichroism (CD), thermal denaturation and viscosity experiments indicate that the qdppz and hqdppz complexes (K(b) approximately 10(6) and Delta T(m)=11-13 degrees C) bind more avidly than the ip, pip and hpip complexes (K(b) approximately 10(5), Delta T(m)=6-8 degrees C). Intramolecular hydrogen bonding in the hpip and hqdppz complexes increases the surface area of the intercalating diimines and enhances the DNA binding affinity substantially. The ammonia co-ligands of the complexes are possibly involved in hydrogen bonding with the intrastrand nucleobases to favour intercalation of the extended aromatic ligands. Circular dichroism spectral studies reveal that all the complexes effect certain structural changes on DNA duplex; [Ru(NH(3))(4)(ip)](2+) induces a B to A transition while [Ru(NH(3))(4)(qdppz)](2+) a B to Psi conformational change on CT DNA. Cleavage efficiency of the complexes were determined using pBR322 supercoiled plasmid DNA. All the complexes, except hqdppz complex, promote the cleavage of supercoiled plasmid (form I) to relaxed circular form (form II).  相似文献   

12.
The binding of the ruthenium(II) complexes of [Ru(bpy)2(CAIP)]Cl2 and [Ru(bpy)2(HCIP)]Cl2 (where bpy=2,2'-bipyridine, CAIP=4-carboxyl-imidado[4,5-f][1,10]-phenanthroline, HCIP=3-hydroxyl-4-carboxyl-imidado[4,5-f][1,10]-phenanthroline) to calf thymus DNA (ct-DNA) has been investigated with UV-visible and emission spectroscopy, steady-state emission quenching, and viscosity measurements. The experimental results indicate that the two complexes bind to ct-DNA through an intercalative mode and [Ru(bpy)2(HCIP)]2+ intercalates into DNA more deeply than [Ru(bpy)2(CAIP)]2+ does.  相似文献   

13.
Shi S  Yao TM  Geng XT  Jiang LF  Liu J  Yang QY  Ji LN 《Chirality》2009,21(2):276-283
New chiral Ru(II) complexes delta and lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) [(bpy = 2,2'-bipyridine; pyip = (2-(1-pyrenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline] were synthesized and characterized by elemental analysis, (1)H NMR, ESI-MS, IR, and CD spectra. Their DNA-binding properties were studied by means of UV-vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of both enantiomer with CT-DNA. Spectroscopy experiments indicated that each of these complexes could interact with the DNA. The DNA-binding of the Delta-enantiomer was stronger than that of Lambda-enantiomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) bound to DNA by intercalation. At the same time, the DNA-photocleavage properties of the complexes were investigated too. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA.  相似文献   

14.
The interactions of complex [Ru(bpy)(2)(hnip)](2+) (1) {bpy?=?2,2'-bipyridine, hnip?=?2-(2-hydroxy-1-naphthyl)imidazo[4,5-f][1,10]phenanthroline} with calf thymus DNA and yeast tRNA were investigated by UV-vis spectroscopy, fluorescence spectroscopy, viscosity, equilibrium dialysis, and circular dichroism. In addition, the antitumor activities of complex 1 were evaluated with MTT method. These results indicate that the structures of DNA and RNA have significant effects on the binding behaviors of complex 1. Further, complex 1 demonstrates different antitumor activities against selected cancer cell lines in vitro.  相似文献   

15.
Ink jet printed carbon nanotube forest arrays capable of detecting picomolar concentrations of immunoglobulin G (IgG) using electrochemiluminescence (ECL) are described. Patterned arrays of vertically aligned single walled carbon nanotube (SWCNT) forests were printed on indium tin oxide (ITO) electrodes. Capture anti-IgG antibodies were then coupled through peptide bond formation to acidic functional groups on the vertical nanotubes. IgG immunoassays were performed using silica nano particles (Si NP) functionalized with the ECL luminophore [Ru(bpy)(2)PICH(2)](2+)], and IgG labelled G1.5 acid terminated PAMAM dendrimers. PAMAM is poly(amido amine), bpy is 2,2'-bipyridyl and PICH(2) is (2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline). The carboxyl terminal of [Ru(bpy)(2)PICH(2)](2+) (fluorescence lifetime ≈ 682±5 ns) dye was covalently coupled to amine groups on the 800 nm diameter silica spheres in order to produce significant ECL enhancement in the presence of sodium oxalate as co-reactant in PBS at pH 7.2). Significantly, this SWCNT-based sensor array shows a wide linear dynamic range for IgG coated spheres (10(6) to 10(12) spheres) corresponding to IgG concentrations between 20 pM and 300 nM. A detection limit of 1.1±0.1 pM IgG is obtained under optimal conditions.  相似文献   

16.
Two ruthenium (II) complexes [Ru(dmb)2(APIP)](ClO4)2 (APIP=2-(2-aminophenyl)imidazo[4,5-f?][1,10]phenanthroline, dmb=4,4'-dimethyl-2,2'-bipyridine; 1) and [Ru(dmb)2(HAPIP)](ClO4)2 (HAPIP=2-(2-hydroxyl-4-aminophenyl)imidazo[4,5-f?][1,10]phenanthroline; 2) were synthesized and characterized. DNA binding was investigated by electronic absorption titration, luminescence spectra, thermal denaturation, viscosity measurements, and photocleavage. The DNA binding constants for complexes 1 and 2 were 4.20 (±0.14)×10(4) and 5.45 (±0.15)×10(4) M(-1). The results suggest that these complexes partially intercalate between the base pairs. The cytotoxicity of complexes 1 and 2 was evaluated by MTT assay. Cellular uptake was observed under fluorescence microscopy; complexes 1 and 2 can enter into the cytoplasm and accumulate in the nuclei. Apoptosis and the antioxidant activity against hydroxyl radicals (?OH) were also explored.  相似文献   

17.

Abstract  

DNA topoisomerases (I and II) have been one of the excellent targets in anticancer drug development. Here two chiral ruthenium(II) anthraquinone complexes, Δ- and Λ-[Ru(bpy)2(ipad)]2+, where bpy is 2,2′-bipyridine and ipad is 2-(anthracene-9,10-dione-2-yl)imidazo[4,5-f][1,10]phenanthroline, were synthesized and characterized. As expected, both of the Ru(II) complexes intercalate into DNA base pairs and possess an obviously greater affinity with DNA. Topoisomerase inhibition and DNA strand passage assay confirmed that the two complexes are efficient dual inhibitors of topoisomerases I and II by interference with the DNA religation. In MTT cytotoxicity studies, two Ru(II) complexes exhibited antitumor activity against HeLa, MCF-7, HepG2 and BEL-7402 tumor cell lines. Flow cytometry analysis shows an increase in the percentage of cells with apoptotic morphological features in the sub-G1 phase for Ru(II) complexes. Nuclear chromatin cleavage has also been observed from AO/EB staining assay and alkaline single-cell gel electrophoresis (comet assay). The results demonstrated that Δ- and Λ-[Ru(bpy)2(ipad)]2+ act as dual inhibitors of topoisomerases I and II, and cause DNA damage that can lead to cell cycle arrest and/or cell death by apoptosis.  相似文献   

18.
The interactions of five bis(bipyridyl) Ru(II) complexes of pteridinyl-phenanthroline ligands with calf thymus DNA have been studied. The pteridinyl extensions were selected to provide hydrogen-bonding patterns complementary to the purine and pyrimidine bases of DNA and RNA. The study includes three new complexes [Ru(bpy)(2)(L-pterin)](2+), [Ru(bpy)(2)(L-amino)](2+), and [Ru(bpy)(2)(L-diamino)](2+) (bpy is 2,2'-bipyridine and L-pterin, L-amino, and L-diamino are phenanthroline fused to pterin, 4-aminopteridine, and 2,4-diaminopteridine), two previously reported complexes [Ru(bpy)(2)(L-allox)](2+) and [Ru(bpy)(2)(L-Me(2)allox)](2+) (L-allox and L-Me(2)allox are phenanthroline fused to alloxazine and 1,3-dimethyalloxazine), the well-known DNA intercalator [Ru(bpy)(2)(dppz)](2+) (dppz is dipyridophenazine), and the negative control [Ru(bpy)(3)](2+). Reported are the syntheses of the three new Ru-pteridinyl complexes and the results of calf thymus DNA binding experiments as probed by absorption and fluorescence spectroscopy, viscometry, and thermal denaturation titrations. All Ru-pteridine complexes bind to DNA via an intercalative mode of comparable strength. Two of these four complexes-[Ru(bpy)(2)(L-pterin)](2+) and [Ru(bpy)(2)(L-allox)](2+)-exhibit biphasic DNA melting curves interpreted as reflecting exceptionally stable surface binding. Three new complexes-[Ru(bpy)(2)(L-diamino)](2+), [Ru(bpy)(2)(L-amino)](2) and [Ru(bpy)(2)(L-pterin)](2+)-behave as DNA molecular "light switches."  相似文献   

19.
A new Ru(II) complex, [Ru(bpy)(2)(dhipH3)](ClO4)(2) (in which bpy=2,2'-bipyridine, dhipH(3)=3,4-dihydroxy-imidado[4,5-f][1,10]-phenanthroline), was synthesized and characterized, and the pH effect on the emission spectra of the complex was studied. The interaction of the complex with calf thymus DNA was investigated by UV-visible and emission spectroscopy, and viscosity measurements. The results suggest that the complex acted as a sensitive luminescent pH sensor and a strong ct-DNA intercalator with an intrinsic binding constant of (4.0+/-0.7) x 10(5) M(-1) in buffered 50 mM NaCl.  相似文献   

20.
We report the synthesis, characterization, and avidin-binding properties of two novel ruthenium complexes, [Ru(bpy)(2)(phen-biotin)][PF(6)](2) 1 and [Ru(phen)(2)(phen-biotin)][PF(6)](2) 2 (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline, phen-biotin = 5-(10-amidobiotinyl)-1,10-phenanthroline)). We demonstrate that both biotinylated compounds bind to avidin through their biotin moieties with high affinity and in a 4:1 ratio. The binding of compounds 1 and 2 to avidin results in an enhancement in luminescence intensity ( approximately 1.4x, approximately 1.6x, respectively), relative to the unbound biotinylated ruthenium complexes. This behavior is markedly different from biotinylated organic dyes, whose fluorescence is quenched upon binding to avidin. Thus, ruthenium-biotin complexes 1 and 2 can form the basis of new, simplified biotin-avidin assays, which involve luminescence detection of the relevant biotinylated molecule through cross-linking with avidin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号