首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
了解真核细胞中细胞核内蛋白质的定位情况对于新发现蛋白质的功能注释具有重要意义.随着蛋白质数据库中蛋白质序列数量的急速增加,采用计算方法来预测蛋白质亚核定位已经成为蛋白质科学领域研究的热点.根据Chou提出的伪氨基酸组成离散模型,提出了一种新的蛋白质亚核定位预测方法.计算蛋白质序列的近似熵作为附加特征构建伪氨基酸组成,表示蛋白质序列特征,AdaBoost分类算法作为预测工具.与已报道的亚核定位预测方法的性能相比,这种方法具有更高的准确率.  相似文献   

2.
3.
The location of a protein in a cell is closely correlated with its biological function. Based on the concept that the protein subcellular location is mainly determined by its amino acid and pseudo amino acid composition (PseAA), a new algorithm of increment of diversity combined with support vector machine is proposed to predict the protein subcellular location. The subcellular locations of plant and non-plant proteins are investigated by our method. The overall prediction accuracies in jackknife test are 88.3% for the eukaryotic plant proteins and 92.4% for the eukaryotic non-plant proteins, respectively. In order to estimate the effect of the sequence identity on predictive result, the proteins with sequence identity 相似文献   

4.
Zhang TL  Ding YS 《Amino acids》2007,33(4):623-629
Compared with the conventional amino acid composition (AA), the pseudo amino acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence; this remarkably enhances the power to use a discrete model for predicting various attributes of a protein. In this study, based on the concept of Chou's PseAA, a 46-D (dimensional) PseAA was formulated to represent the sample of a protein and a new approach based on binary-tree support vector machines (BTSVMs) was proposed to predict the protein structural class. BTSVMs algorithm has the capability in solving the problem of unclassifiable data points in multi-class SVMs. The results by both the 10-fold cross-validation and jackknife tests demonstrate that the predictive performance using the new PseAA (46-D) is better than that of AA (20-D), which is widely used in many algorithms for protein structural class prediction. The results obtained by the new approach are quite encouraging, indicating that it can at least play a complimentary role to many of the existing methods and is a useful tool for predicting many other protein attributes as well.  相似文献   

5.
Shi JY  Zhang SW  Pan Q  Cheng YM  Xie J 《Amino acids》2007,33(1):69-74
As more and more genomes have been discovered in recent years, there is an urgent need to develop a reliable method to predict the subcellular localization for the explosion of newly found proteins. However, many well-known prediction methods based on amino acid composition have problems utilizing the sequence-order information. Here, based on the concept of Chou's pseudo amino acid composition (PseAA), a new feature extraction method, the multi-scale energy (MSE) approach, is introduced to incorporate the sequence-order information. First, a protein sequence was mapped to a digital signal using the amino acid index. Then, by wavelet transform, the mapped signal was broken down into several scales in which the energy factors were calculated and further formed into an MSE feature vector. Following this, combining this MSE feature vector with amino acid composition (AA), we constructed a series of MSEPseAA feature vectors to represent the protein subcellular localization sequences. Finally, according to a new kind of normalization approach, the MSEPseAA feature vectors were normalized to form the improved MSEPseAA vectors, named as IEPseAA. Using the technique of IEPseAA, C-support vector machine (C-SVM) and three multi-class SVMs strategies, quite promising results were obtained, indicating that MSE is quite effective in reflecting the sequence-order effects and might become a useful tool for predicting the other attributes of proteins as well.  相似文献   

6.
Prediction of the subcellular location of apoptosis proteins   总被引:4,自引:0,他引:4  
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. Based on the concept that the subcellular location of an apoptosis protein is mainly determined by its amino acid sequence, a new algorithm for prediction of the subcellular location of an apoptosis protein is proposed. By using of a distinctive set of information parameters derived from the primary sequence of 317 apoptosis proteins, the increment of diversity (ID), the sole prediction parameter, is calculated. The higher predictive success rates than the previous other algorithms is obtained by the jackknife tests using the expanded dataset. Our prediction results show that the local compositions of twin amino acids and hydropathy distribution are very useful to predict subcellular location of protein.  相似文献   

7.
Jiang X  Wei R  Zhao Y  Zhang T 《Amino acids》2008,34(4):669-675
The knowledge of subnuclear localization in eukaryotic cells is essential for understanding the life function of nucleus. Developing prediction methods and tools for proteins subnuclear localization become important research fields in protein science for special characteristics in cell nuclear. In this study, a novel approach has been proposed to predict protein subnuclear localization. Sample of protein is represented by Pseudo Amino Acid (PseAA) composition based on approximate entropy (ApEn) concept, which reflects the complexity of time series. A novel ensemble classifier is designed incorporating three AdaBoost classifiers. The base classifier algorithms in three AdaBoost are decision stumps, fuzzy K nearest neighbors classifier, and radial basis-support vector machines, respectively. Different PseAA compositions are used as input data of different AdaBoost classifier in ensemble. Genetic algorithm is used to optimize the dimension and weight factor of PseAA composition. Two datasets often used in published works are used to validate the performance of the proposed approach. The obtained results of Jackknife cross-validation test are higher and more balance than them of other methods on same datasets. The promising results indicate that the proposed approach is effective and practical. It might become a useful tool in protein subnuclear localization. The software in Matlab and supplementary materials are available freely by contacting the corresponding author.  相似文献   

8.
Given a raw protein sequence, knowing its subcellular location is an important step toward understanding its function and designing further experiments. A novel method is proposed for the prediction of protein subcellular locations from sequences. For four categories of eukaryotic proteins the overall predictive accuracy is 82.0%, 2.6% higher than that by using SVM approach. For three subcellular locations of prokaryotic proteins, an overall accuracy of 89.9% is obtained. In accordance with the architecture of cells, a hierarchical prediction approach is designed. Based on amino acid composition extracellular proteins and intracellular proteins can be identified with accuracy of 97%.  相似文献   

9.
Li FM  Li QZ 《Amino acids》2008,34(1):119-125
Summary. The subnuclear localization of nuclear protein is very important for in-depth understanding of the construction and function of the nucleus. Based on the amino acid and pseudo amino acid composition (PseAA) as originally introduced by K. C. Chou can incorporate much more information of a protein sequence than the classical amino acid composition so as to significantly enhance the power of using a discrete model to predict various attributes of a protein, an algorithm of increment of diversity combined with the improved quadratic discriminant analysis is proposed to predict the protein subnuclear location. The overall predictive success rates and correlation coefficient are 75.4% and 0.629 for 504 single localization proteins in jackknife test, and 80.4% for an independent set of 92 multi-localization proteins, respectively. For 406 single localization nuclear proteins with ≤25% sequence identity, the results of jackknife test show that the overall accuracy of prediction is 77.1%. Authors’ address: Qian-Zhong Li, Laboratory of Theoretical Biophysics, Department of Physics, College of Sciences and Technology, Inner Mongolia University, Hohhot 010021, China  相似文献   

10.
It is a critical challenge to develop automated methods for fast and accurately determining the structures of proteins because of the increasingly widening gap between the number of sequence-known proteins and that of structure-known proteins in the post-genomic age. The knowledge of protein structural class can provide useful information towards the determination of protein structure. Thus, it is highly desirable to develop computational methods for identifying the structural classes of newly found proteins based on their primary sequence. In this study, according to the concept of Chou's pseudo amino acid composition (PseAA), eight PseAA vectors are used to represent protein samples. Each of the PseAA vectors is a 40-D (dimensional) vector, which is constructed by the conventional amino acid composition (AA) and a series of sequence-order correlation factors as original introduced by Chou. The difference among the eight PseAA representations is that different physicochemical properties are used to incorporate the sequence-order effects for the protein samples. Based on such a framework, a dual-layer fuzzy support vector machine (FSVM) network is proposed to predict protein structural classes. In the first layer of the FSVM network, eight FSVM classifiers trained by different PseAA vectors are established. The 2nd layer FSVM classifier is applied to reclassify the outputs of the first layer. The results thus obtained are quite promising, indicating that the new method may become a useful tool for predicting not only the structural classification of proteins but also their other attributes.  相似文献   

11.
Protein subcellular location prediction   总被引:20,自引:0,他引:20  
The function of a protein is closely correlated with its subcellular location. With the rapid increase in new protein sequences entering into data banks, we are confronted with a challenge: is it possible to utilize a bioinformatic approach to help expedite the determination of protein subcellular locations? To explore this problem, proteins were classified, according to their subcellular locations, into the following 12 groups: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic reticulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8) mitochondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12) vacuole. Based on the classification scheme that has covered almost all the organelles and subcellular compartments in an animal or plant cell, a covariant discriminant algorithm was proposed to predict the subcellular location of a query protein according to its amino acid composition. Results obtained through self-consistency, jackknife and independent dataset tests indicated that the rates of correct prediction by the current algorithm are significantly higher than those by the existing methods. It is anticipated that the classification scheme and concept and also the prediction algorithm can expedite the functionality determination of new proteins, which can also be of use in the prioritization of genes and proteins identified by genomic efforts as potential molecular targets for drug design.  相似文献   

12.
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. It is crucial to develop powerful tools to predict apoptosis protein locations for rapidly increasing gap between the number of known structural proteins and the number of known sequences in protein databank. In this study, amino acids pair compositions with different spaces are used to construct feature sets for representing sample of protein feature selection approach based on binary particle swarm optimization, which is applied to extract effective feature. Ensemble classifier is used as prediction engine, of which the basic classifier is the fuzzy K-nearest neighbor. Each basic classifier is trained with different feature sets. Two datasets often used in prior works are selected to validate the performance of proposed approach. The results obtained by jackknife test are quite encouraging, indicating that the proposed method might become a potentially useful tool for subcellular location of apoptosis protein, or at least can play a complimentary role to the existing methods in the relevant areas. The supplement information and software written in Matlab are available by contacting the corresponding author.  相似文献   

13.
Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. As a result of genome and other sequencing projects, the gap between the number of known apoptosis protein sequences and the number of known apoptosis protein structures is widening rapidly. Because of this extremely unbalanced state, it would be worthwhile to develop a fast and reliable method to identify their subcellular locations so as to gain better insight into their biological functions. In view of this, a new method, in which the support vector machine combines with discrete wavelet transform, has been developed to predict the subcellular location of apoptosis proteins. The results obtained by the jackknife test were quite promising, and indicated that the proposed method can remarkably improve the prediction accuracy of subcellular locations, and might also become a useful high-throughput tool in characterizing other attributes of proteins, such as enzyme class, membrane protein type, and nuclear receptor subfamily according to their sequences.  相似文献   

14.
林昊 《生物信息学》2009,7(4):252-254
由于蛋白质亚细胞位置与其一级序列存在很强的相关性,利用多样性增量来描述蛋白质之间氨基酸组分和二肽组分的相似程度,采用修正的马氏判别式(这里称为IDQD方法)对分枝杆菌蛋白质的亚细胞位置进行了预测。利用Jackknife检验对不同序列相似度下的蛋白质数据集进行了预测研究,结果显示,当数据集的序列相似度小于等于70%时,算法的预测精度稳定在75%左右。在对整体852条蛋白质的预测成功率达到87.7%,这一结果优于已有算法的预测精度,说明IDQD是一种有效的分枝杆菌蛋白质亚细胞预测方法。  相似文献   

15.
相似性比对预测蛋白质亚细胞区间   总被引:1,自引:0,他引:1  
王雄飞  张梁  薛卫  赵南  徐焕良 《微生物学通报》2016,43(10):2298-2305
【目的】对蛋白质所属的亚细胞区间进行预测,为进一步研究蛋白质的生物学功能提供基础。【方法】以蛋白质序列的氨基酸组成、二肽、伪氨基酸组成作为序列特征,用BLAST比对改进K最近邻分类算法(K-nearest neighbor,KNN)实现蛋白序列所属亚细胞区间预测。【结果】在Jackknife检验下,数据集CH317三种特征的成功率分别为91.5%、91.5%和89.3%,数据集ZD98成功率分别为93.9%、92.9%和89.8%。【结论】BLAST比对改进KNN算法是预测蛋白质亚细胞区间的一种有效方法。  相似文献   

16.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

17.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

18.
Prediction of protein subcellular locations using fuzzy k-NN method   总被引:7,自引:0,他引:7  
MOTIVATION: Protein localization data are a valuable information resource helpful in elucidating protein functions. It is highly desirable to predict a protein's subcellular locations automatically from its sequence. RESULTS: In this paper, fuzzy k-nearest neighbors (k-NN) algorithm has been introduced to predict proteins' subcellular locations from their dipeptide composition. The prediction is performed with a new data set derived from version 41.0 SWISS-PROT databank, the overall predictive accuracy about 80% has been achieved in a jackknife test. The result demonstrates the applicability of this relative simple method and possible improvement of prediction accuracy for the protein subcellular locations. We also applied this method to annotate six entirely sequenced proteomes, namely Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Oryza sativa, Arabidopsis thaliana and a subset of all human proteins. AVAILABILITY: Supplementary information and subcellular location annotations for eukaryotes are available at http://166.111.30.65/hying/fuzzy_loc.htm  相似文献   

19.
Shi JY  Zhang SW  Pan Q  Zhou GP 《Amino acids》2008,35(2):321-327
In the Post Genome Age, there is an urgent need to develop the reliable and effective computational methods to predict the subcellular localization for the explosion of newly found proteins. Here, a novel method of pseudo amino acid (PseAA) composition, the so-called “amino acid composition distribution” (AACD), is introduced. First, a protein sequence is divided equally into multiple segments. Then, amino acid composition of each segment is calculated in series. After that, each protein sequence can be represented by a feature vector. Finally, the feature vectors of all sequences thus obtained are further input into the multi-class support vector machines to predict the subcellular localization. The results show that AACD is quite effective in representing protein sequences for the purpose of predicting protein subcellular localization.  相似文献   

20.
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号