首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium   总被引:6,自引:0,他引:6  
Production of H2 by Azospirillum brasilense under N2-fixing conditions was studied in continuous and batch cultures. Net H2 production was consistently observed only when the gas phase contained CO. Nitrogenase activity (C2H2 reduction) and H2 evolution (in the presence of 5% CO) showed a similar response to O2 and were highest at 0.75% dissolved O2. Uptake hydrogenase activity, ranging from 0.3 to 2.5 mumol H2/mg protein per hour was observed in batch cultures under N2. Such rates were more than sufficient to recycle nitrogenase-produced H2. Tritium-exchange assay showed that H2 uptake was higher under Ar than under N2. Uptake hydrogenase was strongly inhibited by CO and C2H2. Cyclic GMP inhibited both nitrogenase and uptake hydrogenase activities.  相似文献   

2.
Nitrogenase activities were determined from maximum acetylene reduction rates for mutant strains of Azotobacter vinelandii which are unable to fix N2 in the presence of molybdenum (Nif-) but undergo phenotypic reversal to Nif+ under conditions of Mo deficiency. The system responsible for N2 fixation under these conditions is thought to be an alternative N2 fixation system (Bishop et al., Proc. Natl. Acad. Sci. U.S.A. 77:7342-7346, 1980). Phenotypic reversal of Nif- strains to Nif+ strains was also observed in N-free medium without Mo but with either V or Re. Two protein patterns were found on two-dimensional gels of proteins from the extracts of wild-type cells cultured in N-free medium without Mo and with or without V or Re. The expression of each protein pattern in the wild-type strain of A. vinelandii seemed to depend upon the physiological state of the N2-fixing culture. Electron paramagnetic resonance experiments were conducted on whole cells of A. vinelandii grown under conditions of Mo deprivation in the absence of fixed N. No g = 3.65 signal (an electron paramagnetic resonance signal characteristic of the Mo-containing component of nitrogenase) was detectable in these cells, regardless of whether V or Re was present during growth of these cells, These results are discussed from the perspective that the well-known effect of V on N2 fixation by A. vinelandii may involve an alternative N2 fixation system.  相似文献   

3.
A mutant UW3, which is unable to fix N2 in the presence of Mo (Nif-) but undergo phenotypic reversal to Nif+ under Mo deficiency, was able to grow in Mo- and NH3-deficient medium containing Mn, and the growth was accelerated by Mn at low concentration. A partly purified nitrogenase component Ⅰ protein separated from UW3 grown in the Mn-containing medium was shown to contain Fe and Mn atoms (ratio of Fe/Mo/Mn: 10.41/0.19/1.00) with C2H2- and H+-reducing activity which almost equal to half of that of MoFe protein purified from wild-type mutant of Azotobacter vinelandii Lipmann. This protein was obviously different from MoFe protein in both absorption spectrum and circular dichroism, and the molecular weight of subunits in Mn-containing protein was close to that of α subunit in MoFe protein. The preliminary results indicated that the protein containing Mn might be a nitrogenase component Ⅰprotein.  相似文献   

4.
The effects of nickel on the expression of hydrogenase in the hydrogen-oxidizing bacterium Alcaligenes latus were studied. In the absence of added nickel, both hydrogenase activity, measured as O2-dependent H2 uptake, and hydrogenase protein, measured in a Western immunoblot, were very low compared with the levels in cells induced for hydrogenase in the presence of nickel. Hydrogenase activity and protein levels were dependent on the added nickel concentration and were saturated at 30 nM added Ni2+. The amount of hydrogenase protein in a culture at a given nickel concentration was calculated from the H2 uptake activity of the culture at that Ni2+ concentration. Between 0 and 30 nM added Ni2+, the amount of hydrogenase protein (in nanomoles) was stoichiometric with the amount of added Ni2+. Thus, all of the added Ni2+ could be accounted for in hydrogenase. Between 0 and 50 nM added Ni2+, all the Ni present in the cultures was associated with the cells after 12 h; above 50 nM added Ni2+, some Ni remained in the medium. No other divalent metal cations tested were able to substitute for Ni2+ in the formation of active hydrogenase. We suggest two possible mechanisms for the regulation of hydrogenase activity and protein levels by nickel.  相似文献   

5.
Regulation of hydrogenase in Rhizobium japonicum.   总被引:12,自引:5,他引:7       下载免费PDF全文
Factors that regulate the expression of an H2 uptake system in free-living cultures of Rhizobium japonicum have been investigated. Rapid rates of H2 uptake by R. japonicum were obtained by incubation of cell suspensions in a Mg-phosphate buffer under a gas phase of 86.7% N2, 8.3% H2, 4.2% CO2, and 0.8% O2. Cultures incubated under conditions comparable with those above, with the exception that Ar replaced H2, showed no hydrogenase activity. When H2 was removed after initiation of hydrogenase derepression, further increase in hydrogenase activity ceased. Nitrogenase activity was not essential for expression of hydrogenase activity. All usable carbon substrates tested repressed hydrogenase formation, but none of them inhibited hydrogenase activity. No effect on hydrogenase formation was observed from the addition of KNO3 or NH4Cl at 10 mM. Oxygen repressed hydrogenase formation, but did not inhibit activity of the enzyme in whole cells. The addition of rifampin or chloramphenicol to derepressed cultures resulted in inhibition of enzyme formation similar to that observed by O2 repression. The removal of CO2 during derepression caused a decrease in the rate of hydrogenase formation. No direct effect of CO2 on hydrogenase activity was observed.  相似文献   

6.
Azotobacter vinelandii can grow with a variety of organic carbon sources and fix N2 without the need for added H2. However, due to an active H2-oxidizing system, H2-dependent mixotrophic growth in an N-free medium was demonstrated when mannose was provided as the carbon source. There was no appreciable growth with either H2 or mannose alone. Both the growth rate and the cell yield were dependent on the concentrations of both substrates, H2 and mannose. Cultures growing mixotrophically with H2 and mannose consumed approximately 4.8 mmol of O2 and produced 4.6 mmol of CO2 per mmol of mannose consumed. In the absence of H2, less CO2 was produced, less O2 was consumed, and cell growth was negligible. The rate of acetylene reduction in mixotrophic cultures was comparable to the rate in cultures grown in N-free sucrose medium. The rate of [14C]mannose uptake of cultures with H2 was greater than with argon, whereas [14C]sucrose uptake was unaffected by the addition of H2; therefore, the role of H2 in mixotrophic metabolism may be to provide energy for mannose uptake. A. vinelandii is not an autotroph, as attempts to grow the organism chemoautotrophically with H2 or to detect ribulose bisphosphate carboxylase activity were unsuccessful.  相似文献   

7.
When Rhodopseudomonas capsulata B10 grows in media with different organic compounds, the hydrogenase activity estimated both by the evolution and uptake of H2 is lowest in cells taken from the middle of the exponential growth phase, and highest in cells from the beginning of the stationary phase. Cells grown in a medium containing malate have a higher hydrogenase activity than those cultivated in a medium with lactate or other compounds (900 and 20 nmoles of H2 per 1 min per 1 mg of protein, respectively). In the experiments with chloramphenicol (10(-5) M), organic compounds (not CO2) were shown to repress hydrogenase synthesis. When the cells were incubated in a medium without an organic substrate or in its presence, the exogenous H2 or H2 evolved as the result of nitrogenase action causes an increase in the activity of hydrogenase.  相似文献   

8.
Hydrogenase in Frankia KB5: expression of and relation to nitrogenase   总被引:1,自引:0,他引:1  
The localization and expression of the hydrogenase in free-living Frankia KB5 was investigated immunologically and by monitoring activity, focusing on its relationships with nitrogenase and H2. Immunological studies revealed that the large subunit of the hydrogenase in Frankia KB5 was modified post-translationally, and transferred into the membrane after processing. The large subunit was constitutively expressed and no correlation was found between hydrogenase activity and synthesis. Although H2 was not needed for induction of hydrogenase synthesis, exogenously added H2 triggered hydrogen uptake in medium containing nitrogen, i.e., in the hyphae. A correlation between nitrogenase activity and hydrogen uptake was found in cultures grown in media without nitrogen, but interestingly the two enzymes showed no co-regulation.  相似文献   

9.
L C Seefeldt  D J Arp 《Biochimie》1986,68(1):25-34
Azotobacter vinelandii hydrogenase has been purified to homogeneity from membranes. The enzyme was solubilized with Triton X-100 followed by ammonium sulfate-hexane extractions to remove lipids and detergent. The enzyme was then purified by carboxymethyl-Sepharose and octyl-Sepharose column chromatography. All purification steps were performed under anaerobic conditions in the presence of dithionite and dithiothreitol. The enzyme was purified 143-fold from membranes to a specific activity of 124 mumol of H2 uptake . min-1 . mg protein-1. Nondenaturing polyacrylamide gel electrophoresis of the hydrogenase revealed a single band which stained for both activity and protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands corresponding to peptides of 67,000 and 31,000 daltons. Densitometric scans of the SDS-gel indicated a molar ratio of the two bands of 1.07 +/- 0.05. The molecular weight of the native enzyme was determined by three different methods. While gel permeation gave a molecular weight of 53,000, sucrose density gradient centrifugation and native polyacrylamide gel electrophoresis gave molecular weights of 98,600 +/- 10,000 and 98,600 +/- 2,000, respectively. We conclude that the A. vinelandii hydrogenase is an alpha beta dimer (98,000 daltons) with subunits of 67,000 and 31,000 daltons. Analyses for nickel and iron indicated 0.68 +/- 0.01 mol Ni/mol hydrogenase and 6.6 +/- 0.5 mol Fe/mol hydrogenase. The isoelectric point of the enzyme was 6.1 +/- 0.01. In addition, several catalytic properties of the enzyme have been examined. The Km for H2 was 0.86 microM, and H2 evolution was observed in the presence of reduced methyl viologen. The pH profile of enzyme activity with methylene blue as the electron acceptor has been determined, along with the Km and Vmax for various electron acceptors.  相似文献   

10.
Steady-state chemostat cultures of Azotobacter vinelandii strain CA11, carrying a deletion of genes encoding the structural polypeptides of nitrogenase nifHDK, were established in a simple defined medium chemically purified to minimize contamination by Mo. The medium contained no utilizable N source. Growth was dependent on N2 (1.1 X 10(8) viable cells X ml-1 at D = 0.176 h-1), and was inhibited by Mo (20 nM). DNA hybridization showed the deletion to be stable during prolonged (55 days) growth in the chemostat (132 doublings). Since batch cultures, using unsupplemented 'spent' chemostat medium, showed good growth (1.9 X 10(8) cells X ml-1), no requirement for subnanomolar concentrations of Mo was found. The biomass yield, as the dilution rate (D) was varied, showed that the N content of the culture, protein and dry wt. increased as D was decreased, indicating that neither N2 nor O2 were limiting growth. The limiting nutrient was not identified. Substantial amounts of H2 were evolved by the chemostat cultures, probably as the result of inhibition of O2-dependent hydrogenase activity by nitrilotriacetic acid present in the medium. Over a range of D values approx. 50% of the electron flux through the alternative system was allocated to H+ reduction. C2H2 was a poor substrate, being reduced at 0.14-0.1 times the rate of N2 fixation, calculated from the N content of the cells. SO4(2-)-limited steady-state continuous cultures of strain UW136 (wild-type for nifHDK) had a 2-fold greater biomass in the presence of MoO4(2-) (1 microM). The significance of this finding for 'Mo-limited' continuous cultures [Eady & Robson (1984) Biochem. J. 224, 853-862] is discussed.  相似文献   

11.
We purified active hydrogenase from free-living Rhizobium japonicum by affinity chromatography. The uptake hydrogenase of R. japonicum has been treated previously as an oxygen-sensitive protein. In this purification, however, reducing agents were not added nor was there any attempt to exclude oxygen. In fact, the addition of sodium dithionite to aerobically purified protein resulted in the rapid loss of activity. Purified hydrogenase was more stable when stored under O2 than when stored under Ar. Sodium-chloride-washed hydrogen-oxidizing membranes were solubilized in Triton X-100 and deoxycholate and loaded onto a reactive red 120-agarose column. Purified hydrogenase elutes at 0.36 M NaCl, contains a nickel, and has a pH optimum of 6.0. There was 452-fold purification resulting in a specific activity of 76.9 mumol of H2 oxidized per min per mg of protein and a yield of 17%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed subunits with estimated molecular weights of 65,000 and 33,000. Hydrogenase prepared in this manner was used to raise and affinity purify antibodies against both subunits.  相似文献   

12.
We sequenced the nitrogen fixation regulatory gene nfrX from Azotobacter vinelandii, mutations in which cause a Nif- phenotype, and found that it encodes a 105-kDa protein (NfrX), the N terminus of which is highly homologous to that of the uridylyltransferase-uridylyl-removing enzyme encoded by glnD in Escherichia coli. In vivo complementation experiments demonstrate that the glnD and nfrX products are functionally interchangeable. A vinelandii nfrX thus appears to encode a uridylyltransferase-uridylyl-removing enzyme, and in this paper we report the first sequence of such a protein. The Nif- phenotype of nfrX mutants can be suppressed by a second mutation in a recently identified nifL-like gene immediately upstream of nifA in A. vinelandii. NifL mediates nif regulation in response to the N status in A. vinelandii, presumably by inhibiting NifA activator function as occurs in Klebsiella pneumoniae; thus, one role of NfrX is to modify, either directly or indirectly, the activity of the nifL product.  相似文献   

13.
Hydrogen-mediated mannose uptake in Azotobacter vinelandii.   总被引:1,自引:1,他引:0       下载免费PDF全文
Azotobacter vinelandii can grow mixotrophically with H2 plus mannose under N2-fixing conditions (T. Y. Wong and R. J. Maier, J. Bacteriol. 163:528-533, 1985). Mixotrophically grown cultures incubated in H2 transported mannose with a Vmax fourfold greater than that observed for cultures incubated in argon, but H2 did not change the apparent Km for mannose. Respiratory inhibitors, such as potassium cyanide, hydroxylamine, and p-chloromercuribenzoic acid, as well as the proton conductor carbonyl cyanide m-chlorophenyl-hydrazone inhibited mannose uptake. We suggest that one of the roles of H2 in mixotrophic metabolism is to supply energy that facilitates mannose transport.  相似文献   

14.
H2 uptake and H2-supported O2 uptake were measured in N2-fixing cultures of Frankia strain ArI3 isolated from root nodules of Alnus rubra. H2 uptake by intact cells was O2 dependent and maximum rates were observed at ambient O2 concentrations. No hydrogenase activity could be detected in NH4+-grown, undifferentiated filaments cultured aerobically indicating that uptake hydrogenase activity was associated with the vesicles, the cellular site of nitrogen fixation in Frankia. Hydrogenase activity was inhibited by acetylene but inhibition could be alleviated by pretreatment with H2. H2 stimulated acetylene reduction at supraoptimal but not suboptimal O2 concentrations. These results suggest that uptake hydrogenase activity in ArI3 may play a role in O2 protection of nitrogenase, especially under conditions of carbon limitation.  相似文献   

15.
Uptake hydrogenase (EC 1.12) from Azotobacter vinelandii has been purified 250-fold from membrane preparations. Purification involved selective solubilization of the enzyme from the membranes, followed by successive chromatography on DEAE-cellulose, Sephadex G-100, and hydroxylapatite. Freshly isolated hydrogenase showed a specific activity of 110 mumol of H2 uptake (min X mg of protein)-1. The purified hydrogenase still contained two minor contaminants that ran near the front on sodium dodecyl sulfate-polyacrylamide gels. The enzyme appears to be a monomer of molecular weight near 60,000 +/- 3,000. The pI of the protein is 5.8 +/- 0.2. With methylene blue or ferricyanide as the electron acceptor (dyes such as methyl or benzyl viologen with negative midpoint potentials did not function), the enzyme had pH optima at pH 9.0 or 6.0, respectively, It has a temperature optimum at 65 to 70 degrees C, and the measured half-life for irreversible inactivation at 22 degrees C by 20% O2 was 20 min. The enzyme oxidizes H2 in the presence of an electron acceptor and also catalyzes the evolution of H2 from reduced methyl viologen; at the optimal pH of 3.5, 3.4 mumol of H2 was evolved (min X mg of protein)-1. The uptake hydrogenase catalyzes a slow deuterium-water exchange in the absence of an electron acceptor, and the highest rate was observed at pH 6.0. The Km values varied widely for different electron acceptors, whereas the Km for H2 remained virtually constant near 1 to 2 microM, independent of the electron acceptors.  相似文献   

16.
Two uptake hydrogenases were found in the obligate methanotroph Methylosinus trichosporium OB3b; one was constitutive, and a second was induced by H2. Both hydrogenases could be assayed by measuring methylene blue reduction anaerobically or by coupling their activity to nitrogenase acetylene reduction activity in vivo in an O2-dependent reaction. The H2 concentration for half-maximal activity of the inducible and constitutive hydrogenases in both assays was 0.01 and 0.5 bar (1 and 50 kPa), respectively, making it easy to distinguish these enzymes from one another both in vivo and in vitro. Hydrogen uptake was shown to be coupled to ATP synthesis in methane-starved cells. Methane, methanol, formate, succinate, and glucose all repressed the H2-mediated synthesis of the inducible hydrogenase. Furthermore, this enzyme was only expressed in N-starved cultures and was repressed by NH4+ and NO3-; synthesis of the constitutive hydrogenase was not affected by excess N in the growth medium. In nickel-free, EDTA-containing medium, the activities of these two enzymes were negligible; however, both enzyme activities appeared rapidly following the addition of nickel to the culture. Chloramphenicol, when added along with nickel, had no effect on the rapid appearance of either the constitutive or inducible activity, indicating that nickel is not required for synthesis of the hydrogenase apoproteins. These observations all suggest that these hydrogenases are nickel-containing enzymes. Finally, both hydrogenases were soluble and could be fractionated by 20% ammonium sulfate; the constitutive enzyme remained in the supernatant solution, while the inducible enzyme was precipitated under these conditions.  相似文献   

17.
18.
A hydrogenase linked to the carbon monoxide oxidation pathway in Rubrivivax gelatinosus displays tolerance to O2. When either whole-cell or membrane-free partially purified hydrogenase was stirred in full air (21% O2, 79% N2), its H2 evolution activity exhibited a half-life of 20 or 6 h, respectively, as determined by an anaerobic assay using reduced methyl viologen. When the partially purified hydrogenase was stirred in an atmosphere containing either 3.3 or 13% O2 for 15 min and evaluated by a hydrogen-deuterium (H-D) exchange assay, nearly 80 or 60% of its isotopic exchange rate was retained, respectively. When this enzyme suspension was subsequently returned to an anaerobic atmosphere, more than 90% of the H-D exchange activity was recovered, reflecting the reversibility of this hydrogenase toward O2 inactivation. Like most hydrogenases, the CO-linked hydrogenase was extremely sensitive to CO, with 50% inhibition occurring at 3.9 microM dissolved CO. Hydrogen production from the CO-linked hydrogenase was detected when ferredoxins of a prokaryotic source were the immediate electron mediator, provided they were photoreduced by spinach thylakoid membranes containing active water-splitting activity. Based on its appreciable tolerance to O2, potential applications of this hydrogenase are discussed.  相似文献   

19.
Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP.   总被引:11,自引:0,他引:11  
Utilisation (uptake) of hydrogen gas by whole cells of Rhizobium japonicum was found to be influenced by the carbon source(s) present in the growth medium, with activity being highest in a medium containing sugars. Tricarboxylic acid cycle intermediates, such as malate, significantly reduced H2 utilisation. No reduction in the hydrogenase activity is observed when the enzyme is assayed directly by the tritium exchange method, indicating that the decrease in hydrogen uptake activity is not due to repression of hydrogenase biosynthesis. Cyclic AMP was found to alleviate the inhibition of H2 uptake by malate, and this requires new protein synthesis. Addition of chloramphenicol or rifampicin simultaneously with cyclic AMP eliminated the stimulation of H2 uptake in the malate medium. These results show that in R. japonicum cyclic AMP plays a major role in the regulation of H2 metabolism.  相似文献   

20.
光合菌SDH2 hupT基因的突变与吸氢酶表达   总被引:1,自引:0,他引:1  
利用三亲本杂交将自杀质粒pSE8引入光合细菌Rodobacter sp.SDH20菌株,经过质粒上插入了kan^R基因的hupT基因片段与受体基因组同源双交换,构建成hupT插入突变株SDHT1和SDHT2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号