首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

2.
C L Fu  R J Maier 《Applied microbiology》1991,57(12):3511-3516
Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyzhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO4. For both strains, Ni2+ uptake was also markedly inhibited by Mg2+, and the Mg(2+)-mediated inhibition could be overcome by high levels of Ni2+ provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni2+ via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co2+, Mn2+, and Zn2+, like Mg2+, were competitive inhibitors of Ni2+ uptake. The KiS for nickel uptake inhibition by Mg2+, Co2+, Mn2+, and Zn2+ were 48, 22, 12, and 8 microM, respectively. Cu2+ strongly inhibited Ni2+ uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, and ionophores nigericin and valinomycin significantly inhibited short-term (5 min) Ni2+ uptake, showing that Ni2+ uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.  相似文献   

3.
Azotobacter vinelandii cultures express more H2 uptake hydrogenase activity when fixing N2 than when provided with fixed N. Hydrogen, a product of the nitrogenase reaction, is at least partly responsible for this increase. The addition of H2 to NH4+-grown wild-type cultures caused increased whole-cell H2 uptake activity, methylene blue-dependent H2 uptake activity of membranes, and accumulation of hydrogenase protein (large subunit as detected immunologically) in membranes. Both rifampin and chloramphenicol inhibited the H2-mediated enhancement of hydrogenase synthesis. Nif- A. vinelandii mutants with deletions or insertions in the nif genes responded to added H2 by increasing the amount of both whole-cell and membrane-bound hydrogenase activities. Nif- mutant strain CA11 contained fourfold more hydrogenase protein when incubated in N-free medium with H2 than when incubated in the same medium containing Ar. N2-fixing wild-type cultures that produce H2 did not increase hydrogenase protein levels in response to added H2.  相似文献   

4.
The chelating agents EDTA, o-phenanthroline, nitrilotriacetic acid (NTA), ethylenediamine-bis(o-hydroxyphenylacetic acid) (EDDA) or dimethylglyoxime prevented the expression of hydrogenase activity in batch cultures of nitrogen-fixing Azotobacter chroococcum, but did not inhibit preformed enzyme. The inhibition was reversed either by adding a mixture of trace elements (Cu2+, Mn2+, Zn2+, Co2+) or Ni2+ or, to a lesser degree, Co2+ alone. Ni2+ or Ni2+ + Fe2+ also enhanced the rate of hydrogenase derepression in A. chroococcum in the absence of any added chelator, if the medium was first extracted with 8-hydroxyquinoline. A. chroococcum accumulated 63Ni2+ by an energy-independent mechanism. Both, Ni2+ uptake and hydrogenase synthesis were equally inhibited by either NTA, EDTA, EDDA or dimethylglyoxime. The evidence suggests a role for Ni2+ in hydrogenase synthesis.  相似文献   

5.
Hydrogenase activities in cyanobacteria   总被引:3,自引:0,他引:3  
In the unicellular Anacystis nidulans, the expression of both the H2-uptake (with phenazine methosulfate or methylene blue as the electron acceptor) and H2-evolution (with methyl viologen reduced by Na2S2O4) was dependent on Ni in the culture medium. In extracts from Anacystis and Anabaena 7119, H2-evolution and uptake activities were strongly inhibited by Cu2+, p-chloromercuribenzoate and HgCl2 suggesting that at least one functional SH-group is involved in catalysis by hydrogenase. Extracts from the N2-fixing Anabaena 7119 contained two different hydrogenase fractions which could be separated by chromatography on DE-52 cellulose using a linear NaCl concentration gradient. The fraction eluting with 0.13 M NaCl from the column catalyzed only the uptake of H2 with methylene blue as the electron acceptor but virtually not the evolution of H2 ("uptake" hydrogenase fraction). The fraction eluting at a NaCl strength of 0.195 M catalyzed both H2-uptake with methylene blue and H2-evolution with reduced methyl viologen ("reversible" hydrogenase fraction). Growth under anaerobic conditions drastically enhanced the activity levels of the "reversible" but not of the "uptake" hydrogenase fraction. The "uptake" hydrogenase but not the "reversible" protein was activated by reduced thioredoxin. It is suggested that thioredoxin activates the H2-uptake by the membrane-bound "uptake" hydrogenase also in intact cells. The occurrence of the number of hydrogenases in cyanobacteria will be reevaluated.  相似文献   

6.
Nickel is a constituent of soluble and particulate hydrogenase of Alcaligenes eutrophus. Incorporation of 63Ni2+ revealed that almost the total nickel taken up by the cells was bound to the protein. Chromatography of a crude extract on diethylaminoethyl cellulose demonstrated an association of 63Ni2+ with soluble and particulate hydrogenase, supported by further analysis like polyacrylamide gel electrophoresis. Unspecific binding of 63Ni2+ to the protein was excluded by comparison with a mutant extract free of hydrogenase protein. X-ray fluorescence analysis of the homogeneous soluble hydrogenase indicated the presence of 2 mol of nickel per mol of enzyme, whereas the amount of nickel determined by incorporation of 63Ni2+ was calculated to be approximately 1 mol/mol of enzyme. Cells grown under nickel limitation contained catalytically inactive, but serologically active, soluble and particulate hydrogenase. The immunochemical reactions were only partially identical with the enzyme from nickel-cultivated cells indicating a structural modification of the proteins in the absence of nickel. It is concluded that nickel is essential for the catalytic activity of hydrogenase and not involved as a regulatory component in the synthesis of this enzyme.  相似文献   

7.
Nickel uptake in Bradyrhizobium japonicum.   总被引:8,自引:6,他引:2       下载免费PDF全文
Free-living Bradyrhizobium japonicum grown heterotrophically with 1 microM 63Ni2+ accumulated label. Strain SR470, a Hupc mutant, accumulated almost 10-fold more 63Ni2+ on a per-cell basis than did strain SR, the wild type. Nongrowing cells were also able to accumulate nickel over a 2-h period, with the Hupc mutant strain SR470 again accumulating significantly more 63Ni2+ than strain SR. These results suggest that this mutant is constitutive for nickel uptake as well as for hydrogenase expression. The apparent Kms for nickel uptake in strain SR and strain SR470 were found to be similar, approximately 26 and 50 microM, respectively. The Vmax values, however, were significantly different, 0.29 nmol of Ni/min per 10(8) cells for SR and 1.40 nmol of Ni/min per 10(8) cells for SR470. The uptake process was relatively specific for nickel; only Cu2+ and Zn2+ (10 microM) were found to appreciably inhibit the uptake of 1 microM Ni, while a 10-fold excess of Mg2+, Co2+, Fe3+, or Mn2+ did not affect Ni2+ uptake. The lack of inhibition by Mg2+ indicates that nickel is not transported by a magnesium uptake system. Nickel uptake was also inhibited by cold (53% inhibition at 4 degrees C) and slightly by the ionophores nigericin and carbonyl cyanide m-chlorophenylhydrazone. Other ionophores did not appreciably affect nickel uptake, even though they significantly stimulated O2 uptake. The cytochrome c oxidase inhibitors azide, cyanide, and hydroxylamine did not inhibit Ni2+ uptake, even at concentrations (of cyanide and hydroxylamine) that inhibited O2 uptake. The addition of oxidizable substrates such as succinate or gluconate did not increase nickel uptake, even though they increased respiratory activity. Nickel update showed a pH dependence with an optimum at 6.0. Most (approximately 85%) of the 63Ni2+ taken up in 1 min by strain SR470 was not exchangeable with cold nickel.  相似文献   

8.
9.
Two distinct types of hydrogenase occur in Anabaena 7120 and are distinguishable in whole filaments by the application of selective assay methods. A reversible hydrogenase occurs both in heterocysts and vegetative cells and can be selectively assayed by measuring H2 evolution from reduced methyl viologen. Activities in aerobically grown filaments were low but could be increased by 2 to 3 orders of magnitude by growing cells microaerobically. The presence of the reversible hydrogenase was independent of the N2-fixing properties of the organism, and activity did not respond to added H2 in the culture. Illumination was necessary during derepression of the reversible hydrogenase, and addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea increased the amount of enzyme that was synthesized. An uptake hydrogenase occurred only in heterocysts of aerobically grown filaments, but a small amount of activity also was present in the vegetative cells of filaments grown microaerobically with 20% H2. It was assayed selectively by measuring an oxyhydrogen reaction at atmospheric levels of O2. Additional uptake hydrogenase could be elicited by including H2 or by removing O2 from the sparging gas of a culture.  相似文献   

10.
Nickel is a component of hydrogenase in Rhizobium japonicum   总被引:23,自引:12,他引:11       下载免费PDF全文
The derepression of H2-oxidizing activity in free-living Rhizobium japonicum does not require the addition of exogenous metal to the derepression media. However, the addition of EDTA (6 microM) inhibited derepression of H2 uptake activity by 80%. The addition of 5 microM nickel to the derepression medium overcame the EDTA inhibition. The addition of 5 microM Cu or Zn also relieved EDTA inhibition, but to a much lesser extent; 5 microM Fe, Co, Mg, or Mn did not. The kinetics of induction and magnitude of H2 uptake activity in the presence of EDTA plus Ni were similar to those of normally derepressed cells. Nickel also relieved EDTA inhibition of methylene blue-dependent Hup activity, suggesting that nickel is involved directly with the H2-activating hydrogenase enzyme. Adding nickel or EDTA to either whole cells or crude extracts after derepression did not affect the hydrogenase activity. Cells were grown in 63Ni and the hydrogenase was subsequently purified by gel electrophoresis. 63Ni comigrated with the H2-dependent methylene blue reducing activity on native polyacrylamide gels and native isoelectric focusing gels. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the nickel-containing hydrogenase band revealed a single polypeptide with a molecular weight of ca. 67,000. We conclude that the hydrogenase enzyme in R. japonicum is a nickel-containing metalloprotein.  相似文献   

11.
12.
The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.  相似文献   

13.
Redox titrations with hydrogenase from Chromatium vinosum show that its nickel ion can exist in 3, possibly 4, different redox states: the 3+, 2+, 1+ and possibly a zero valent state. The 1+ state is unstable: oxidation to Ni(II) occurs unless H2 gas is present. The Ni(I) coordination, but not that of Ni(III), is highly light sensitive. A photoreaction occurs on illumination. It is irreversible below 77 K, but reversible at 200 K. The rate of this photodissociation reaction in 2H2O is nearly 6-times slower than in H2O, indicating the breakage of a nickel-hydrogen bond. This forms the first evidence for an H atom in the direct coordination sphere of Ni in hydrogenase and for the involvement of this metal in the reaction with hydrogen.  相似文献   

14.
The nickel and cobalt resistance plasmid pMOL28 was transferred by conjugation from its natural host Alcaligenes eutrophus CH34 to the susceptible A. eutrophus N9A. Strain N9A and its pMOL28-containing transconjugant M220 were studied in detail. At a concentration of 3.0 mM NiCl2, the wild-type N9A did not grow, while M220 started to grow at its maximum exponential growth rate after a lag of 12 to 24 h. When grown in the presence of subinhibitory concentrations (0.5 mM) of nickel salt, M220 grew actively at 3 mM NiCl2 without a lag, indicating that nickel resistance is an inducible property. Expression of nickel resistance required active growth in the presence of nickel salts at a concentration higher than 0.05 mM. Two mutants of M220 were isolated which expressed nickel resistance constitutively. When the plasmids, pMOL28.1 and pMOL28.2, carried by the mutants were transferred to strains H16 and CH34, the transconjugants expressed constitutive nickel resistance. This indicates that the mutation is plasmid located. Both mutants expressed constitutive resistance to nickel and cobalt. Physiological studies revealed the following differences between strain N9A and its pMOL28.1-harboring mutant derivatives. (i) The uptake of 63NiCl2 occurred more rapidly in the susceptible strain and reached a 30- to 60-fold-higher amount that in the pMOL28.1-harboring mutant; (ii) in intact cells of the susceptible strain N9A, the cytoplasmic hydrogenase was inhibited by 1 to 5 nM NiCl2, whereas 10 mM Ni2+ was needed to inhibit the hydrogenase of mutant cells; (iii) the minimal concentration of nickel chloride for the derepressed synthesis of cytoplasmic hydrogenase was lower in strain N9A (1 to 3 microM) than in the constitutive mutant (8 to 10 microM).  相似文献   

15.
16.
Two uptake hydrogenases were found in the obligate methanotroph Methylosinus trichosporium OB3b; one was constitutive, and a second was induced by H2. Both hydrogenases could be assayed by measuring methylene blue reduction anaerobically or by coupling their activity to nitrogenase acetylene reduction activity in vivo in an O2-dependent reaction. The H2 concentration for half-maximal activity of the inducible and constitutive hydrogenases in both assays was 0.01 and 0.5 bar (1 and 50 kPa), respectively, making it easy to distinguish these enzymes from one another both in vivo and in vitro. Hydrogen uptake was shown to be coupled to ATP synthesis in methane-starved cells. Methane, methanol, formate, succinate, and glucose all repressed the H2-mediated synthesis of the inducible hydrogenase. Furthermore, this enzyme was only expressed in N-starved cultures and was repressed by NH4+ and NO3-; synthesis of the constitutive hydrogenase was not affected by excess N in the growth medium. In nickel-free, EDTA-containing medium, the activities of these two enzymes were negligible; however, both enzyme activities appeared rapidly following the addition of nickel to the culture. Chloramphenicol, when added along with nickel, had no effect on the rapid appearance of either the constitutive or inducible activity, indicating that nickel is not required for synthesis of the hydrogenase apoproteins. These observations all suggest that these hydrogenases are nickel-containing enzymes. Finally, both hydrogenases were soluble and could be fractionated by 20% ammonium sulfate; the constitutive enzyme remained in the supernatant solution, while the inducible enzyme was precipitated under these conditions.  相似文献   

17.
In the presence of carbon monoxide, the photosynthetic bacterium Rhodospirillum rubrum induces expression of proteins which allow the organism to metabolize carbon monoxide in the net reaction CO + H2O --> CO2 + H2. These proteins include the enzymes carbon monoxide dehydrogenase (CODH) and a CO-tolerant hydrogenase. In this paper, we present the complete amino acid sequence for the large subunit of this hydrogenase and describe the properties of the crude enzyme in relation to other known hydrogenases. The amino acid sequence deduced from the CO-induced hydrogenase large-subunit gene (cooH) shows significant similarity to large subunits of other Ni-Fe hydrogenases. The closest similarity is with HycE (58% similarity and 37% identity) from Escherichia coli, which is the large subunit of an Ni-Fe hydrogenase (isoenzyme 3). The properties of the CO-induced hydrogenase are unique. It is exceptionally resistant to inhibition by carbon monoxide. It also exhibits a very high ratio of H2 evolution to H2 uptake activity compared with other known hydrogenases. The CO-induced hydrogenase is tightly membrane bound, and its inhibition by nonionic detergents is described. Finally, the presence of nickel in the hydrogenase is addressed. Analysis of wild-type R. rubrum grown on nickel-depleted medium indicates a requirement for nickel for hydrogenase activity. However, analysis of strain UR294 (cooC insertion mutant defective in nickel insertion into CODH) shows that independent nickel insertion mechanisms are utilized by hydrogenase and CODH. CooH lacks the C-terminal peptide that is found in other Ni-Fe hydrogenases; in other systems, this peptide is cleaved during Ni processing.  相似文献   

18.
Nickel-deficient (Nic-) mutants of Alcaligenes eutrophus requiring high levels of nickel ions for autotrophic growth with hydrogen were characterized. The Nic- mutants carried defined deletions in the hydrogenase gene cluster of the indigenous pHG megaplasmid. Nickel deficiency correlated with a low level of the nickel-containing hydrogenase activity, a slow rate of nickel transport, and reduced activity of urease. The Nic+ phenotype was restored by a cloned DNA sequence (hoxN) of a megaplasmid pHG1 DNA library of A. eutrophus H16. hoxN is part of the hydrogenase gene cluster. The nickel requirement of Nic- mutants was enhanced by increasing the concentration of magnesium. This suggests that the Nic- mutants are impaired in the nickel-specific transport system and thus depend on the second transport activity which normally mediates the uptake of magnesium.  相似文献   

19.
Some properties of a hydrogenase from the recently isolated phototrophic sulfur bacterium Lamprobacter modestohalophilus strain Syvash and its resistance to a number of inactivating factors have been investigated. The enzyme consists of two subunits, 64 and 30 kD; pI = 4.5. The optimal pH was 8.5-9.5 for hydrogen uptake and 4.0 for H2 evolution. Hydrogenase preparations were resistant to the effects of O2, CO, and temperature, revealing high stability under storage. A considerable inactivation of the enzyme was observed at temperatures above 80 degrees C; the temperature optimum of methyl viologen reduction by H2 was 85 degrees C. Inhibitory effects of Ni2+, Cd2+, and Mg2+ on the hydrogenase activity were shown to be reversible and competitive with respect to methyl viologen in the hydrogen oxidation reaction.  相似文献   

20.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号