首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 384 毫秒
1.
光照,湿度和培养基对苎麻疫霉卵孢子产生量的影响   总被引:2,自引:0,他引:2  
采用3因素随机区组设计研究了光照、湿度和培养基对苎麻疫霉(Phytophthoraboehmeriae)卵孢子产生量的影响.结果表明,各因子对卵孢子产生量的影响效应大小次序为培养基>光照>湿度,其中培养基和光照两因子影响均在0.01水平上显著.在供试的4种常用培养基上,卵孢子产生量的大小次序为:SLA培养基(SLA)>利马豆培养基(LBA)>V6汁培养基(V6A)>澄清的V6汁培养基(V6B).在设置的3种光照条件中,卵孢子产生量以连续黑暗处理最高,连续光照最低,光照与黑暗交替处理居中.3个试验因子间的所有互作对卵孢子产生量均有极显著的影响.在不同光照、湿度、培养基组合中,卵孢子产生量以低湿+连续黑暗+SLA组合最高,低湿+连续光照+V6B组合最低.  相似文献   

2.
马铃薯晚疫病菌卵孢子萌发的初步研究   总被引:4,自引:0,他引:4  
描述了马铃薯晚疫病菌卵孢子萌发的方式并研究了菌株组合、卵孢子形成时间、在琼脂培养基上培养时间及光照对卵孢子萌发的影响,结果表明不同菌株组合卵孢子萌发率为0—7.2%,对峙培养20天后形成的卵孢子的萌发率最高达8.7%,在琼脂培养基上培养25-30d 萌发率最高达11.4%,卵孢子形成时黑暗及在琼脂培养基上萌发时光照萌发率最高达11.8%。  相似文献   

3.
研究了不同菌株组合,马铃薯植株茎、叶及接种物中A1和A2菌株孢子囊比例、温度、湿度对卵孢子产生的影响。不同菌株组合产生卵孢子的数量有显著差异;在离体接种情况下,叶片中产生卵孢子数量大于茎中产生卵孢子数量;A1和A2菌株中孢子囊不同比例对卵孢子产生影响很大,当比值为1∶1时卵孢子产生量最大;15℃光照条件下培养,并给侵染叶片持续的水分供应才能产生大量卵孢子;寄主的抗性水平对卵孢子产生有明显的影响,中抗品种上产生卵孢子量最多,高抗品种上产生卵孢子量最少,感病品种上产生卵孢子量居中。  相似文献   

4.
研究了不同菌株组合,马铃薯植株茎、叶及接种物中A1和A2菌株孢子囊比例、温度、湿度对卵孢子产生的影响。不同菌株组合产生卵孢子的数量有显著差异;在离体接种情况下,叶片中产生卵孢子数量大于茎中产生卵孢子数量;A1和A2菌株中孢子囊不同比例对卵孢子产生影响很大,当比例为1:1时卵孢子产生量最大;15℃光照条件下培养,并给侵染叶片持续的水分供应才能产生大量卵孢子;寄主的抗性水平对卵孢子产生有明显的影响,中抗品种上产生卵孢子量最多,高抗品种上产生卵孢子量最少,感病品种上产生卵孢子量居中。  相似文献   

5.
采用正交试验、单因子试验和植物组织培养方法,探讨几种因子对野葛块根组织脱分化与再分化的影响。结果表明,野葛块根愈伤组织诱导的最佳培养基为MS+NAA 0.5mg/L+6-BA 1.0mg/L+2,4-D 2.0mg/L,暗培养更有利于愈伤组织的诱导;野葛块根愈伤组织的最佳出芽培养基为MS+NAA 0.5mg/L+6-BA 3.0mg/L或MS+NAA 0.5mg/L+KT 2.0mg/L,光照培养更有利于愈伤组织芽的再分化;野葛块根愈伤组织再生芽生根最佳培养基为MS+NAA 0.5mg/L+PP333 3.0mg/L+蔗糖30g/L;PP333 3.0mg/L和蛭石:珍珠岩(2:1)基质能显著提高再生苗的移栽成活率。  相似文献   

6.
南瓜未受精胚珠的离体培养及植株再生   总被引:3,自引:0,他引:3  
以南瓜(Cucurbita moschata)品种试验1号为材料, 以未受精胚珠为外植体, 研究了激素种类、外植体发育时期、高温预处理时间和AgNO3浓度对胚状体诱导的影响。结果表明, 2,4-D、NAA和6-BA组合有利于胚状体的形成, 出胚效果最好的培养基为MS+1.0 mg·L–12,4-D+0.25 mg·L–1NAA+0.5 mg·L–16-BA, 出胚率达31.1%; 雌花开放当天的胚珠出胚率最高(26.7%), 且愈伤组织形成频率低(<5%); 外植体在黑暗、高温(35°C)条件下处理5天有利于胚状体的形成, 出胚率为32.2%。培养基中添加AgNO3对胚状体形成的抑制作用明显。胚状体转移至成苗培养基后可形成正常小苗, 出苗率最高可达64.3%, 植株再生过程经历了典型的胚胎发育途径。细胞学观察结果表明, 胚状体极有可能起源于胚囊珠孔端的细胞, 即卵细胞或助细胞。  相似文献   

7.
红掌组织培养与快速繁殖   总被引:13,自引:1,他引:12  
红掌叶片在新代培养基上的分化能力与品种和叶片部位有关。组织培养试验表明,最佳诱导培养基为改良Nitsch (NH4NO3 200mg/L)+6-BA 1.0mg/L+2,4-D 0.1mg/L;芽增殖培养基Nitsch (NH4NO3720mg/L)+6-BA 0.5mg/L;生根培养基为Nitsch (NH4NO3720mg/L)。  相似文献   

8.
野葛高频植株再生体系相关因子的优化   总被引:1,自引:0,他引:1  
对野葛高频植株再生体系相关因子进行优化,结果表明,野葛带芽茎段再生体系的最佳消毒方式为70%酒精处理30s后用0.1% HgCl2处理15min;最佳培养基为MS+NAA 0.5mg/L+6-BA 5.0mg/L;最佳培养条件为:蔗糖浓度30g/L,pH 6.0,液体培养,培养温度25℃,光照培养。  相似文献   

9.
袁云香 《植物研究》2020,40(5):673-678
以小果卫矛嫩茎为外植体,采用L9(34)正交设计法,研究了不同灭菌组合、不同基本培养基、不同浓度6-BA、2,4-D、NAA配比对小果卫矛愈伤组织诱导、再分化及生根的影响。结果表明:小果卫矛嫩茎最适的灭菌组合为75%酒精消毒30 s+0.1%升汞消毒15 min,愈伤组织诱导的最佳培养基为MS+3.0 mg·L-1 6-BA+1.0 mg·L-1 2,4-D,诱导率为79%;再分化的最佳培养基为MS+6-BA 2.0 mg·L-1+NAA 0.2 mg·L-1,再分化率为78.83%,1/2 MS+NAA 1.2 mg·L-1适用于生根培养,生根率达到83.23%。  相似文献   

10.
遮阴对闽楠叶绿素含量和光合特性的影响   总被引:1,自引:0,他引:1  
为探讨闽楠对不同光环境的光合适应机制,以2年生闽楠幼苗为材料,设置3个光照处理(全光照、遮光率50%和遮光率78%),适应6个月后,测定其叶绿素含量、气体交换和叶绿素荧光同步数据,研究不同光环境处理对闽楠叶片叶绿素含量、叶绿素荧光参数和光合特性的影响.结果表明: 3种光照处理下,闽楠叶片叶绿素a、叶绿素b、叶绿素(a+b)和类胡萝卜素含量大小次序为78%遮光率>50%遮光率>全光照,但不同光照处理对闽楠叶绿素a/b值没有显著影响.遮阴条件下,闽楠叶片光补偿点(LCP)降低,光饱和点(LSP)和表观量子效率(AQY)升高,说明遮阴条件下闽楠叶片对弱光和强光的利用能力均有所提高;最大净光合速率(Pn max)、光下暗呼吸速率(Rd)和最大电子传递速率(Jmax)均增大.在不同处理间,闽楠叶片净光合速率(Pn)、CO2气孔导度(gsc)、胞间CO2浓度(Ci)和叶肉导度(gm)均存在显著差异.Pngm的大小顺序为: 78%遮光率>50%遮光率>全光照.78%遮光率处理下gsc显著大于全光照.50%遮光率条件和78%遮光率条件下Ci均显著小于全光照.78%遮光率条件下PSⅡ实际光量子产量(Fv′/Fm′)、PSⅡ光化学效率(ΦPSⅡ)和电子传递速率(J)均显著大于50%遮光率条件和全光照.由此可知,在遮阴条件下闽楠可以通过增加叶绿素含量、AQY、Jgscgm来增大光合能力.  相似文献   

11.
Four pre-selected indigenous yeast strains belonging to Candida guilliermondii (V2 and V5), Candida pulcherrima (V6) and Kloeckera apiculata (V9), were used as β-glucosidase (βGL) and β-xylosidase (βXL) sources. The optimization of yeast culture conditions was carried out and the effects of oenological parameters on β-glycosidase activities were evaluated. C. guilliermondii V2 and C. pulcherrima V6 strains were selected. These strains showed intracellular (C. pulcherrima V6) and parietal (C. guilliermondii V2) constitutive βGL and βXL. The enzymatic activities were active at pH, glucose, ethanol and SO2 concentrations usually found in winemaking and they were able to release monoterpenols and alcohols from grape juice glycoside extracts. Additionally, these yeast strains were not able to produce volatile acidity and off flavour. Regional ecological relevance of these species was also discussed. Our results evidence that the selected C. guilliermondii V2 and C. pulcherrima V6 strains have interesting oenological characteristics and allow us to think in their potential application in winemaking.  相似文献   

12.
河西走廊荒漠盐碱地人工柽柳林土壤水盐分布   总被引:5,自引:0,他引:5  
土壤盐碱化是一个全球性问题,植树造林是一种主要的改良措施.为了研究荒漠盐碱地10年人工柽柳林土壤水盐空间分布及生态改良效果,对2、4、6和8m行间距柽柳灌下和行间的土壤水盐进行分析,并构建结构方程模型量化土壤水盐对植被的影响程度.结果表明:林地浅层土壤(0~40 cm)可溶性盐明显低于林外(CK),灌下土壤含水率高于行间.且6m行间距柽柳的高度和冠幅及其灌下草本植物的盖度和生物量均大于其他行间距柽柳,阳离子在柽柳周围的富集程度为Na^+>K^+>Ca^2+>Mg2+,阴离子的富集程度为Cl^->HCO3^->SO4^2-.土壤盐分含量最高的是MgSO4,其次是CaCl2、NaCl和MgCl2,KHCO3含量最少.土壤水盐中影响植被生长的最大因素是土壤水分,其次是盐分,最小为pH,权重大小分别是50.6%、29.5%和19.9%.  相似文献   

13.
SYNOPSIS. Deprived of vitamin B12, Euglena gracilis strain Z ceases to divide which we believe to be a function of the light regime: division inhibition occurs more quickly in continuous light than in alternating (6L : 6D) light and not at all in total darkness. This phenomenon is dependent on the carbon source; cells grown in glutamate-malate medium do not divide regardless of the culture conditions while dl -lactate as carbon source permits growth in darkness in the absence of B12. Conditions which lead to an increased O2 or decreased CO2 tension in the medium, such as agitation in darkness or incubation in red or white light, result in inhibition of division. This inhibition can be reversed by re-transferring the cells to still culture in the dark or, in the case of light-induced blockage, by the addition of DCMU.  相似文献   

14.
Seedlings of spring wheat ( Triticum aestivum L. cv. Svenno) were cultivated at 20°C in continuous light or darkness with the roots in nutrient solutions for six days. The plants were starved for K+ during different periods of time to produce plants with various K+ status. In one cultivation light-grown plants were pretreated in darkness, and vice versa, before the uptake experiment. In all experiments, roots were put in a complete nutrient medium containing 2.0 m M K+ radiolabelled with 86Rb. The uptake time was varied (5, 60 or 120 min).
The K+ concentration in the roots, [K+]root, increased during the course of the uptake experiments, especially in light and at initially low [K+]root, At the same time K+ (86Rb) influx in the roots decreased. The simoidal relationship obtained between K+ (86Rb) influx and [K+]root was affected by these changes, and Hill plots gave various Hill coefficients, nH, depending on the duration of the uptake experiments. nH from three apparently straight line segments of the same plot, in different [K+]root - intervals, indicated a falling degree of interaction between the binding sites as [K+]root increased. For the dark-grown plants negative cooperativity could not be demonstrated.  相似文献   

15.
The aqueous chemistry of vanadium with physiologically relevant ligands constitutes a subject of burgeoning research, extending from bacterial metalloenzymic functions to human-health physiology. Vanadium, in the form of VCl3 and V2O5, reacted expediently with citric acid, in a 1:2 molar ratio in water at pH4, and, in the presence of various cations, afforded crystalline materials bearing the general formula (Cat)2[V2O4(C6H6O7)2nH2O (A) (Cat+=Na+, NH4 +, n=2; Me4N+, K+, n=4). Exploration of the reactivity of A toward H2O2 yielded the peroxo-containing complexes (Cat)2[V2O2(O2)2(C6H6O7)2]·2H2O (B) (Cat+=K+, NH4 +). Both classes of compounds were characterized analytically and spectroscopically. The X-ray structures of complexes A and B emphasize the exceptional stability of the dimeric rhombic unit V2O2, which is retained upon H2O2 reaction, and the preserved mode of coordination of the citrate ligand as a doubly deprotonated moiety. In these complexes, typical six and eight coordination numbers were observed for the Na+ and K+ counter-ions, respectively. The variety of synthetic approaches leading to A, along with the stepwise and direct assembly and isolation of peroxo-compounds (B), denotes the significance of reaction pathways and intermediates in vanadium(III–V)–citrate synthetic chemistry. Hence, a systematic investigation of reactivity modes in aqueous vanadium–citrate systems emerges as a crucial tool for the establishment of chemical interconnectivity among low MW complex species, potentially participating in the intricate biodistribution of that metal ion in biological fluids.  相似文献   

16.
Thermoluminescence profiles of spruce leaves grown under various light or dark conditions were measured after excitation at a low temperature (−70 to −20 °C) by 1-min illumination with red light, and the following results were obtained. Mature spruce leaves showed five thermoluminescence bands at −30, −5, +20, +40 (or +35) and +70 °C (denoted as Zv, A, B1, B2 and C bands, respectively), but dark-grown spruce leaves with a similar chlorophyll content showed only two bands, at −30 and +70 °C (the Zv and C bands) and were devoid of the three other bands (the A, B1 and B2 bands). On exposure of the dark-grown leaves to continuous red light, the A, B1 and B2 bands were rapidly developed, and the development was accompanied by enhancement of delayed emission, fluorescence variation and the Hill activity (photoreduction of 2,6-dichlorophenolindophenol with water as electron donor). It was demonstrated that the dark-grown spruce leaves are devoid of the water-splitting system in Photosystem II, and that the latent water-splitting activity is rapidly photoactivated by exposure of the leaves to continuous red light. These results on the gymnosperm spruce leaves, in which greening proceeds in complete darkness, being independent of the development of the water-splitting system in light, were discussed in relation to previous observations on angiosperm leaves, in which both greening and the activity generation proceed in the light.  相似文献   

17.
The respiratory uptake or photosynthetic evolution of oxygen by mesophyll protoplasts of pea ( Pisum sativum L. cv. Arkel) were monitored during successive short. (3–5 min) cycles of darkness and illumination. The rate of respiration was nearly doubled after 3–4 short periods of illumination while there was a 15–20% enhancement in photosynthesis with cycles of illumination and darkness preceding illumination. Such interaction between photosynthesis and respiration was statistically significant when bicarbonate was present in the reaction medium. The inhibitors of photosynthesis [3(3,4–dichlorophenyl)-l,l-dimethylurea (DCMU), glyceraldehyde] decreased respiration after periods of illumination, whereas inhibitors of respiratory electron transport (Rotenone, antimycin A, NaN3) suppressed photosynthesis, as well. We suggest that a rapid beneficial interaction exists between photosynthesis and respiration in protoplasts, even during short cycles of light and darkness.  相似文献   

18.
Nitrate reductase (NR, EC 1.6.6.1) was tested in crude extracts of leaves from Bryophyllum fedtschenkoi plants growing under alternating light/darkness as well as in excised leaves kept in continuous light or darkness. In most extracts NR activity was inhibited 20–80% by 5 m M Mg2+ A light or darkness shift (30 min darkness) during the first part of the photoperiod gave an increase in the Mg2+ inhibition and a decrease in NR activity. Magnesium ion inhibition of NR also showed diurnal variations. Strongest inhibition was found in extracts made during the latter part of the photoperiod and start of the dark period. Pre-incubation of crude extracts with ATP increased Mg2+ inhibition, indicating that phosphorylation of NR is involved in regulation of NR in Crassulacean acid metabolism (CAM) plants. In continuous light an increase in Mg2+ inhibition occurred after 20 h and 40 h, indicating a rhythm in the phosphorylation of NR. A delay in the production of nitrite in the assay (hysteresis) was generally seen in extracts susceptible to Mg2+ inhibition. The rhythms related to NR activity showed the same period length (20 h) as the rhythm in CO2 exchange. However, in contrast to the rhythm in CO2 exchange, NR rhythms were strongly damped in continuous light. In constant darkness the rhythms were even more damped. The results show that post-translational modification of CAM NR is influenced by light/darkness and by an endogenous rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号