首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mycobacterium tuberculosis genome harbors an unusually large number of toxin-antitoxin (TA) modules. Curiously, over half of these are VapBC (virulence-associated protein) family members. Nonetheless, the cellular target, precise mode of action, and physiological role of the VapC toxins in this important pathogen remain unclear. To better understand the function of this toxin family, we studied the features and biochemical properties of a prototype M. tuberculosis VapBC TA system, vapBC-mt4 (Rv0596c-Rv0595c). VapC-mt4 expression resulted in growth arrest, a hallmark of all TA toxins, in Escherichia coli, Mycobacterium smegmatis, and M. tuberculosis. Its expression led to translation inhibition accompanied by a gradual decrease in the steady-state levels of several mRNAs. VapC-mt4 exhibited sequence-specific endoribonuclease activity on mRNA templates at ACGC and AC(A/U)GC sequences. However, the cleavage activity of VapC-mt4 was comparatively weak relative to the TA toxin MazF-mt1 (Rv2801c). Unlike other TA toxins, translation inhibition and growth arrest preceded mRNA cleavage, suggesting that the RNA binding property of VapC-mt4, not RNA cleavage, initiates toxicity. In support of this hypothesis, expression of VapC-mt4 led to an increase in the recovery of total RNA with time in contrast to TA toxins that inhibit translation via direct mRNA cleavage. Additionally, VapC-mt4 exhibited stable, sequence-specific RNA binding in an electrophoretic mobility shift assay. Finally, VapC-mt4 inhibited protein synthesis in a cell-free system without cleaving the corresponding mRNA. Therefore, the activity of VapC-mt4 is mechanistically distinct from other TA toxins because it appears to primarily inhibit translation through selective, stable binding to RNA.  相似文献   

2.
Escherichia coli contains operons called "addiction modules," encoding toxin and antitoxin, which are responsible for growth arrest and cell death. Here, we demonstrate that MazF toxin encoded by "mazEF addiction module" is a sequence-specific (ACA) endoribonuclease functional only for single-stranded RNA. MazF works as a ribonuclease independent of ribosomes, and is, therefore, functionally distinct from RelE, another E. coli toxin, which assists mRNA cleavage at the A site on ribosomes. Upon induction, MazF cleaves whole cellular mRNAs to efficiently block protein synthesis. Purified MazF inhibited protein synthesis in both prokaryotic and eukaryotic cell-free systems. This inhibition was released by MazE, the labile antitoxin against MazF. Thus, MazF functions as a toxic endoribonuclease to interfere with the function of cellular mRNAs by cleaving them at specific sequences leading to rapid cell growth arrest and cell death. The role of such endoribonucleases may have broad implication in cell physiology under various growth conditions.  相似文献   

3.
4.
Escherichia coli contains a number of antitoxin-toxin modules on its chromosome, which are responsible for cell growth arrest and possible cell death. ChpBK is a toxin encoded by the ChpBIK antitoxin-toxin module. This module consists of a pair of genes, chpBI and chpBK encoding antitoxin ChpBI and toxin ChpBK, respectively. ChpBK consists of 116 amino acid residues, and its sequence shows 35% identity and 52% similarity to MazF, another E. coli toxin. MazF has been shown to be a sequence-specific (ACA) endoribonuclease that cleaves cellular mRNAs and effectively blocks protein synthesis and is thus termed as an mRNA interferase. Here we demonstrate that ChpBK is another mRNA interferase in E. coli whose induction effectively blocks cell growth in a manner similar to that of MazF. The protein synthesis as judged by incorporation of [35S]methionine was, however, reduced by only 60% upon ChpBK induction. We demonstrate that ChpBK is a new sequence-specific endoribonuclease that cleaves mRNAs both in vivo and in vitro at the 5'-or3'-side of the A residue in ACY sequences (Y is U, A, or G). The ChpBK cleavage of a synthetic RNA substrate generated a 2',3'-cyclic phosphate group at the 3'-end of the 5'-end product and a 5'-OH group at the 5'-end of the 3'-end product in a manner identical to that of MazF.  相似文献   

5.
本文应用悉生小鼠做模型,研究了大肠杆菌(E.coli)和青春型双歧杆菌(Bifidobacterium adolescentis)对艰难梭菌(Clostridium diffi-cile)的拮抗作用。E.coli和B.adolescentis预先接种无菌SSB小鼠,再用C.difficile攻击。结果表明,E.coli和E.coli B.adolescentis对小鼠均有保护作用,保护平分别为87.5%(7/8)和100%(8/8)。B.adolescentis定值后数量达10~(10.28)CFU/g,且对E.coli数量和小鼠本身无影响。E.coli和B.adolescentis联合比E.coli单独抑制C.difficile在肠道中繁殖的作用更强(0.02>P>0.01),但对其毒素产生和粘附力的作用无明显差异。C.difficile攻击后的1~14天,小鼠粪便中C.difficile菌数在10~4至10~8CFU/g内变化,细胞毒素为10~3CFU/g,A毒素滴度为10~2/g,B.adolescentis也一度下降10~2CFU/g。接种C.difficile后,小鼠虽无明显的腹泻症状,但组织学仍可观察到肠粘膜有充血和分泌增加等轻度损害。扫描电镜和普通光镜均发现E.coli单独或与B.adolescentis共同吸附在肠粘膜微绒毛表面,未见有C.difficile吸附。  相似文献   

6.
7.
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. This raises intriguing questions as to why E. coli contains so many toxin genes and what are their roles in bacterial physiology. Among these, MazF has been shown to be a sequence-specific endoribonuclease, which cleaves mRNAs at ACA sequences to completely inhibit protein synthesis. MazF is therefore called mRNA interferase. A number of other mRNA interferases with different cleavage specificities have been discovered not only in E. coli, but also in other bacteria including Mycobacterium tuberculosis. Induction of MazF in the cell leads to cellular dormancy termed quasi-dormancy. In spite of complete cell growth inhibition, cells in the quasi-dormant state are fully capable of energy metabolism, amino acids and nucleic acids biosynthesis and RNA and protein synthesis. The quasi-dormancy may be implicated in cell survival under stress conditions and may play a major role in pathogenicity of M. tuberculosis. The quasi-dormant cells provide an intriguing novel biotechnological system producing only a protein of interest in a high yield. MazF causing Bak-dependent programmed cell death in mammalian cells may be used as a tool for gene therapy against cancer and AIDS. The discovery of a novel way to interfere with mRNA function by mRNA interferases opens a wide variety of avenues in basic as well as applied and clinical sciences.  相似文献   

8.
9.
10.
11.
Phospholipase C-γl (PLC-γl) expression is associated with cellular transformation. Notably, PLC-gamma is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-γl overexpression. We found that PLC-γl-transformed cells, but not vectortransformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-γl-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-γl-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-γl is highly up-regulated.  相似文献   

12.
Recently, it has been found that ribosome pausing at stop codons caused by certain nascent peptides induces cleavage of mRNA in Escherichia coli cells (1, 2). The question we addressed in the present study is whether mRNA cleavage occurs when translation elongation is prevented. We focused on a specific peptide sequence (AS17), derived from SecM, that is known to cause elongation arrest. When the crp-crr fusion gene encoding CRP-AS17-IIA(Glc) was expressed, cAMP receptor protein (CRP) proteins truncated around the arrest sequence were efficiently produced, and they were tagged by the transfer-messenger RNA (tmRNA) system. Northern blot analysis revealed that both truncated upstream crp and downstream crr mRNAs were generated along with reduced amounts of the full-length crp-crr mRNA. The truncated crp mRNA dramatically decreased in the presence of tmRNA due to rapid degradation. The 3' ends of truncated crp mRNA correspond well to the C termini of the truncated CRP proteins. We conclude that ribosome stalling by the arrest sequence induces mRNA cleavage near the arrest point, resulting in nonstop mRNAs that are recognized by tmRNA. We propose that the mRNA cleavage induced by ribosome stalling acts in concert with the tmRNA system as a way to ensure quality control of protein synthesis and possibly to regulate the expression of certain genes.  相似文献   

13.
Clostridium difficile (toxin) associated typhlitis was diagnosed in untreated barrier-maintained specific pathogen free guineapigs. It resembled the pathological lesions of antibiotic induced enterocolitis. The possible role of limited colonization resistance to C. difficile provided by mouse enteric microflora in the pathogenesis of the disease is discussed.  相似文献   

14.
15.
Clostridium difficile is an important pathogen associated with outbreaks of pseudomembranous colitis and other intestinal disorders such as diarrhea. In this study, 181 stool samples from children with and without acute diarrhea were analysed. Eighteen children with acute diarrhea were positive to C. ramosum, C. difficile, C. limosum, C. clostridioforme, C. septicum, C. butyricum, C. innocuum and Clostridium sp. Nineteen children without diarrhea harbored C. ramosum, C. septicum, C. barattii, C. butyricum, C. innocuum, C. sphenoides, C. bifermentans, C. clostridioforme and C. paraputrificum. No patient with diarrhea harbored C. barattii, C. bifermentans, C. paraputrificum and C. sphenoides. In addition, ten C. difficile strains were detected in 5 (5.5%) of the children with diarrhea. Also, no children from control group harbored C. difficile, C. limosum and Clostridium sp. Most of the tested strains were resistant to all the used antimicrobial. Nine C. difficile were toxigenic on VERO cells and by multiplex PCR, six strains showed both toxin A and B genes and three strains showed only toxin B gene. In this study, the presence of C. difficile was not significant, and it is suggested the need of more studies to evaluate the role of clostridia or C. difficile play in the childhood diarrhea and these organisms must be looked for routinely and a periodic evaluation of antimicrobial susceptibility should be performed.  相似文献   

16.
Clostridium difficile inoculated BALB/c mice were investigated to assess the comparative role of antibiotic and proton pump inhibitor. They were examined for colonization and toxin production by C. difficile as well as myeloperoxidase activity and histopathological changes in the intestinal tract. The C. difficile count, toxin A and B titres and myeloperoxidase activity were significantly higher (P>0.05) in ampicillin and lansoprazole receiving groups as compared to the control and the C. difficile receiving groups. Similarly they showed significant difference (P >0.05) for epithelial damage, oedema and neutrophilic infiltrate in colons. In addition to antibiotic, PPI also acts as an independent risk factor for C. difficile infection in experimental studies.  相似文献   

17.
Genomic DNA from ribotype-01 and -17 Clostridium difficile strains was used for amplification of the sequences encoding the carboxy-terminal domain of toxins A (TcdA) and B (TcdB). The deduced C-terminal TcdB ribotype-01 and -17 domains share 99.5% amino acid sequence identity while TcdA ribotype-17 comprises a 607 amino acid deletion compared to TcdA-01. When compared to previously sequenced C. difficile toxins, 99.3% amino acid identity was found between TcdA-01 and TcdA from strain VPI10643 and 98.8% identity between TcdA-17 and TcdA from strain F-1470. The obtained sequences were fused in 3' to a sequence encoding a hexahistidine tag and cloned into an Escherichia coli expression vector. The recombinant proteins were expressed in E. coli and purified using single-step metal-chelate chromatography. The recombinant carboxy-terminal domain of TcdA-01 was purified from the soluble E. coli lysate fraction whereas TcdA-17 and TcdB-17 carboxy-terminal domains were purified from inclusion bodies. At least 40 mg of each protein was purified per liter of bacterial culture. The recombinant toxin domains were detected specifically by Western blot and ELISA with antibodies against native C. difficile toxins. This study demonstrated that the carboxy-terminal domains of TcdA and TcdB can be produced using an E. coli expression system and easily purified. These recombinant, stable, and non-toxic proteins provide a convenient source for use in the diagnosis of C. difficile infections, instead of native toxins, as controls and calibrators in immunoassay kits and to obtain specific monoclonal antibodies.  相似文献   

18.
The prevalence of Clostridium difficile and its toxins (A and B) in HIV-positive children in Poland was investigated in a group of 18 children, aged 6 months to 8 1/2 years. Stool samples were tested using an antigen detection method for toxin A/B, cytotoxicity-neutralization and culture. In 3 cases (17%) C. difficile toxins were detected in both stool samples and strains recovered from culture. The three strains isolated were shown by PCR methods to contain toxins A and B genes. All children had been treated previously with antimicrobial and antiviral agents. All three C. difficile-positive children had mild diarrhea that resolved without specific therapy. Further studies involving a large number of children and molecular analyses of isolated C. difficile strains are necessary to determine the frequency and rate of carriage of C. difficile strains among HIV-positive children in Poland.  相似文献   

19.
Clostridial glucosylating cytotoxins inactivate mammalian Rho GTPases by mono-O glucosylation of a conserved threonine residue located in the switch 1 region of the target protein. Here we report that EhRho1, a RhoA-like GTPase from the protozoan parasite Entamoeba histolytica, is glucosylated by clostridial cytotoxins. Recombinant glutathione S-transferase-EhRho1 and EhRho1 from cell lysate of Entamoeba histolytica were glucosylated by Clostridium difficile toxin B and Clostridium novyi alpha-toxin. In contrast, Clostridium difficile toxin A, which shares the same mammalian protein substrates with toxin B, did not modify EhRho1. Change of threonine 52 of EhRho1 to alanine prevented glucosylation by toxin B from Clostridium difficile and by alpha-toxin from Clostridium novyi, which suggests that the equivalent threonine residues are glucosylated in mammalian and Entamoeba Rho GTPases. Lethal toxin from Clostridium sordellii did not glucosylate EhRho1 but labeled several other substrate proteins in lysates from Entamoeba histolytica in the presence of UDP-[14C]glucose.  相似文献   

20.
Type II chromosomal toxin-antitoxin (TA) modules consist of a pair of genes that encode two components: a stable toxin and a labile antitoxin interfering with the lethal action of the toxin through protein complex formation. Bioinformatic analysis of Streptococcus mutans UA159 genome identified a pair of linked genes encoding a MazEF-like TA. Our results show that S. mutans mazEF genes form a bicistronic operon that is cotranscribed from a σ70-like promoter. Overproduction of S. mutans MazF toxin had a toxic effect on S. mutans which can be neutralized by coexpression of its cognate antitoxin, S. mutans MazE. Although mazF expression inhibited cell growth, no cell lysis of S. mutans cultures was observed under the conditions tested. The MazEF TA is also functional in E. coli, where S. mutans MazF did not kill the cells but rather caused reversible cell growth arrest. Recombinant S. mutans MazE and MazF proteins were purified and were shown to interact with each other in vivo, confirming the nature of this TA as a type II addiction system. Our data indicate that MazF is a toxic nuclease arresting cell growth through the mechanism of RNA cleavage and that MazE inhibits the RNase activity of MazF by forming a complex. Our results suggest that the MazEF TA module might represent a cell growth modulator facilitating the persistence of S. mutans under the harsh conditions of the oral cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号