首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae served as a model fungal system to examine functional genomics of oxidative stress responses and reactions to test antioxidant compounds. Twenty-two strains of S. cerevisiae, including a broad spectrum of singular gene deletion mutants, were exposed to hydrogen peroxide (H2O2) to examine phenotypic response to oxidative stress. Responses of particular mutants treated with gallic, tannic or caffeic acids, or methyl gallate, during H2O2 exposure, indicated that these compounds alleviated oxidative stress. These compounds are also potent inhibitors of aflatoxin biosynthesis in Aspergillus flavus. To gain further insights into a potential link between oxidative stress and aflatoxin biosynthesis, 43 orthologs of S. cerevisiae genes involved in gene regulation, signal transduction (e.g., SHO1, HOG1, etc.) and antioxidation (e.g., CTT1, CTA1, etc.) were identified in an A. flavus expressed sequence tag library. A successful exemplary functional complementation of an antioxidative stress gene from A. flavus, mitochondrial superoxide dismutase (sodA), in a sod2 yeast mutant further supported the potential of S. cerevisiae deletion mutants to serve as a model system to study A. flavus. Use of this system to further examine functional genomics of oxidative stress in aflatoxigenesis and reduction of aflatoxin biosynthesis by antioxidants is discussed.  相似文献   

2.
The effect of fungicides on the production of aflatoxin byAspergillus flavus IMI 89717, diacetoxyscirpenol and zearalenone byFusarium graminearum was studied. In a yeast extract - sucrose medium, dicloran, iprodione and vinclozolin fungicides significantly inhibited mycelial growth ofA. flavus at 250 ppm and significantly decreased aflatoxin production at 100, 250 and 500 ppm, respectively. In potato — dextrose broth, these fungicides diminished the mycelial growth ofF. graminearum and production of diacetoxyscirpenol and zearalenone at 100 ppm. Sensitivity of toxigenic mycelia to fungicides increased approximately five-fold in a yeast extract-starch medium with an appreciable reduction in sugar uptake andα-amylase activity.  相似文献   

3.
Various species of fungi in the genus Aspergillus are the most common causative agents of invasive aspergillosis and/or producers of hepato-carcinogenic mycotoxins. Salicylaldehyde (SA), a volatile natural compound, exhibited potent antifungal and anti-mycotoxigenic activities to A. flavus and A. parasiticus. By exposure to the volatilized SA, the growth of A. parasiticus was inhibited up to 10–75% at 9.5 mM ≤ SA ≤ 16.0 mM, while complete growth inhibition was achieved at 19.0 mM ≤ SA. Similar trends were also observed with A. flavus. The aflatoxin production, i.e., aflatoxin B1 and B2 (AFB1, AFB2) for A. flavus and AFB1, AFB2, AFG1, and AFG2 for A. parasiticus, in the SA-treated (9.5 mM) fungi was reduced by ~13–45% compared with the untreated control. Using gene deletion mutants of the model yeast Saccharomyces cerevisiae, we identified the fungal antioxidation system as the molecular target of SA, where sod1Δ [cytosolic superoxide dismutase (SOD)], sod2Δ (mitochondrial SOD), and glr1Δ (glutathione reductase) mutants showed increased sensitivity to this compound. Also sensitive was the gene deletion mutant, vph2Δ, for the vacuolar ATPase assembly protein, suggesting vacuolar detoxification plays an important role for fungal tolerance to SA. In chemosensitization experiments, co-application of SA with either antimycin A or strobilurin (inhibitors of mitochondrial respiration) resulted in complete growth inhibition of Aspergillus at much lower dose treatment of either agent, alone. Therefore, SA can enhance antifungal activity of commercial antifungal agents required to achieve effective control. SA is a potent antifungal and anti-aflatoxigenic volatile that may have some practical application as a fumigant.  相似文献   

4.
Aspergillus niger or Aspergillus tamarii when grown as mixed cultures with toxigenic A. flavus inhibits biosynthesis of aflatoxin by A. flavus, owing primarily to its ability to produce inhibitors of aflatoxin biosynthesis and to their ability to degrade aflatoxin. Gluconic acid partly prevents aflatoxin production. The other factors such as changes in pH of the medium and the effect on the growth of A. flavus have no role in imparting capabilities to these cultures to inhibit aflatoxin production by A. flavus.  相似文献   

5.
Aspergillus flavus is a pathogenic fungus that produces carcinogenic aflatoxins, posing a great threat to crops, animals and humans. Lysine acetylation is one of the most important reversible post-translational modifications and plays a vital regulatory role in various cellular processes. However, current information on the extent and function of lysine acetylation and aflatoxin biosynthesis in A. flavus is limited. Here, a global acetylome analysis of A. flavus was performed by peptide pre-fractionation, pan-acetylation antibody enrichment and liquid chromatography–mass spectrometry. A total of 1313 high-confidence acetylation sites in 727 acetylated proteins were identified in A. flavus. These acetylation proteins are widely involved in glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle and aflatoxin biosynthesis. AflO (O-methyltransferase), a key enzyme in aflatoxin biosynthesis, was found to be acetylated at K241 and K384. Deletion of aflO not only impaired conidial and sclerotial developments, but also dramatically suppressed aflatoxin production and pathogenicity of A. flavus. Further site-specific mutations showed that lysine acetylation of AflO could also result in defects in development, aflatoxin production and pathogenicity, suggesting that acetylation plays a vital role in the regulation of the enzymatic activity of AflO in A. flavus. Our findings provide evidence for the involvement of lysine acetylation in various biological processes in A. flavus and facilitating in the elucidation of metabolic networks.  相似文献   

6.
AIMS: The aim of this study was to show whether antioxidative response systems are potentially useful molecular targets for control of Aspergillus fumigatus and Aspergillus flavus. Selected phenolic agents are used in target-gene-based bioassays to determine their impact on mitochondrial respiration. METHODS AND RESULTS: Vanillyl acetone, vanillic acid, vanillin, cinnamic acid, veratraldehyde, m-coumaric acid (phenolic agents to which Saccharomyces cerevisiae sod2delta mutant showed sensitivity), carboxin (inhibits complex II of the mitochondrial respiratory chain), strobilurins/antimycin A (inhibits complex III of the mitochondrial respiratory chain) and fludioxonil/fenpiclonil [antifungals potentiated by mitogen-activated protein kinase (MAPK)] were examined in A. fumigatus, A. flavus and S. cerevisiae. Individual or combined application of phenolics with inhibitors of mitochondrial respiration showed some of the phenolics effectively inhibited fungal growth. Target-gene bioassays were performed using a sakAdelta (MAPK deletion) strain of A. fumigatus and a complementation analysis using the mitochondrial superoxide dismutase (Mn-SOD) gene (sodA) of A. flavus in the ortholog mutant, sod2delta, of S. cerevisiae. The results demonstrated that mitochondrial antioxidative stress system plays important roles in fungal response to antifungal agents tested. CONCLUSIONS: Antioxidative response systems of fungi can be an efficient molecular target of phenolics for pathogen control. Combined application of phenolics with inhibitors of mitochondrial respiration can effectively suppress the growth of fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural compounds that do not pose any significant medical or environmental risks could serve as useful alternatives or additives to conventional antifungals. Identifying the antioxidative response systems in other pathogens could improve methods for fungal control.  相似文献   

7.
Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. To better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. Aspergillus flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed 77 genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis.  相似文献   

8.
Research on the aflatoxin problem in groundnut at ICRISAT   总被引:3,自引:0,他引:3  
Summary Aflatoxin contamination of groundnut is a serious problem in most groundnut producing countries and as such is given high research priority by the Groundnut Improvement Program of ICRISAT. Since 1979 we have concentrated on selecting cultivars resistant to seed invasion and colonization by toxigenicAspergillus flavus, and/or to aflatoxin production following invasion by the fungus. Resistance to invasion and colonization byA. flavus of rehydrated, mature seed has been found, and confirmed, in some cultivars. We have also screened several groundnut cultivars for seed resistance in the field, both under natural conditions and with the inoculum of the fungus added to the soil in the pod zone. Some cultivars with resistance to seed colonization also showed resistance to seed invasion byA. flavus. None of the cultivars tested has shown complete resistance to aflatoxin production but significant cultivar differences occurred in the amounts of aflatoxin produced in seeds inoculated with a toxigenic strain ofA. flavus.ICRISAT Journal Article No. JA-316  相似文献   

9.
Aflatoxins are the most toxic and carcinogenic naturally occurring mycotoxins. They are produced primarily byAspergillus flavus andA. parasiticus. In order to better understand the molecular mechanisms that control aflatoxin production, identification of genes usingA. flavus expressed sequence tags (ESTs) and microarrays is currently being performed. Sequencing and annotation ofA. flavus ESTs from a normalizedA. flavus cDNA library identified 7,218 unique EST sequences. Genes that are putatively involved in aflatoxin biosynthesis, regulation and signal transduction, fungal virulence or pathogenicity, stress response or antioxidation, and fungal development were identified from these ESTs. Microarrays containing over 5,000 uniqueA. flavus gene amplicons were constructed at The Institute for Genomic Research. Gene expression profiling under aflatoxin-producing and non-producing conditions using this microarray has identified hundreds of genes that are potentially involved in aflatoxin production. Further investigations on the functions of these genes by gene knockout experiments are underway. This research is expected to provide information for developing new strategies for controlling aflatoxin contamination of agricultural commodities.  相似文献   

10.
11.
Aflatoxins are polyketide-derived, toxic, and carcinogenic secondary metabolites produced primarily by two fungal species, Aspergillus flavus and A. parasiticus, on crops such as corn, peanuts, cottonseed, and treenuts. Regulatory guidelines issued by the U.S. Food and Drug Administration (FDA) prevent sale of commodities if contamination by these toxins exceeds certain levels. The biosynthesis of these toxins has been extensively studied. About 15 stable precursors have been identified. The genes involved in encoding the proteins required for the oxidative and regulatory steps in the biosynthesis are clustered in a 70 kb portion of chromosome 3 in the A. flavus genome. With the characterization of the gene cluster, new insights into the cellular processes that govern the genes involved in aflatoxin biosynthesis have been revealed, but the signaling processes that turn on aflatoxin biosynthesis during fungal contamination of crops are still not well understood. New molecular technologies, such as gene microarray analyses, quantitative polymerase chain reaction (PCR), and chromatin immunoprecipitation are being used to understand how physiological stress, environmental and soil conditions, receptivity of the plant, and fungal virulence lead to episodic outbreaks of aflatoxin contamination in certain commercially important crops. With this fundamental understanding, we will be better able to design improved non-aflatoxigenic biocompetitive Aspergillus strains and develop inhibitors of aflatoxin production (native to affected crops or otherwise) amenable to agricultural application for enhancing host-resistance against fungal invasion or toxin production. Comparisons of aflatoxin-producing species with other fungal species that retain some of the genes required for aflatoxin formation is expected to provide insight into the evolution of the aflatoxin gene cluster, and its role in fungal physiology. Therefore, information on how and why the fungus makes the toxin will be valuable for developing an effective and lasting strategy for control of aflatoxin contamination.  相似文献   

12.
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.  相似文献   

13.
14.
黄曲霉(Aspergillus flavus)是一种常见的腐生真菌和条件致病菌,其次生代谢产物黄曲霉毒素(Aflatoxin,AFT)具有高度的致癌性和致畸性,严重危及人类和动物健康。近年来,功能基因组学研究发展迅速,在真菌生长发育、挖掘真菌次级代谢产物以及研究包括黄曲霉毒素在内的真菌毒素等方面得到了广泛的应用。功能基因组学在研究黄曲霉与宿主之间的相互作用以及黄曲霉与其他曲霉之间的相互作用方面具有巨大的潜力。然而,黄曲霉功能基因组学受到细胞壁难以破除、耐药性高、筛选标记少、缺陷型菌株构建费力耗时等因素的影响而发展缓慢。概述了黄曲霉的选择标记、遗传转化方法和黄曲霉毒素以及环匹阿尼酸(cyclopiazonic acid, CPA)生物合成的研究进展,并讨论了在提高黄曲霉基因操作效率方面的潜在策略。例如,构建缺乏非同源末端连接(NHEJ)途径的菌株、Cre-loxP重组系统、CRISPR-Cas9等方法,为深入开展黄曲霉遗传学研究提供参考。  相似文献   

15.
Purchase  I. F. H.  Steyn  M.  Emilie Pretorius  H. 《Mycopathologia》1968,35(3-4):239-244
Summary The ability of 44 strains ofA. flavus and 6 strains ofA. parasiticus to produce aflatoxin M on various substrates was examined. It was found that these strains produced aflatoxin M only with larger quantities of aflatoxin B. The presence of several other minor metabolites in culture extracts is described. The highest yield of aflatoxin M was produced by a strain ofA. flavus grown on maize meal.  相似文献   

16.
Sixteen samples of some Nigerian indigenous beverages and foodstuffs were analyzed for their aflatoxin content. All the eight samples of beverages tested were found to be contaminated with aflatoxin.Of the eight samples of foodstuffs tested, all contained aflatoxin except ewedu, dawadawa and shoko yokoto.All the beverages used as culture media for Aspergillus flavus (UBMI) supported the growth of the fungus and aflatoxin elaboration. A. flavus was found to grow luxuriantly on all samples of foodstuffs, except dawadawa. However, growth of the fungus on foodstuffs was not synonymous with aflatoxin production.  相似文献   

17.
Twenty-one isolates ofAspergillus flavus Link ex Fries obtained from cotton, maize and wheat were screened for their ability to produce aflatoxins on two liquid media. Of these, sixteen isolates were toxigenic and produced only aflatoxin B1 as assessed by bioassay on okra seedlings and TLC method. For screening isolates ofA. flavus for aflatoxin formation, 0.7 % YES+ Salt medium was found to be good as also for obtaining higher yields of the toxin. Isolates ofA. flavus produced aflatoxin B1 ranging from 0.85 to 17.2 mg/50 ml. Maximum yield of aflatoxin was obtained when rice was used as the substrate in case of toxigenic isolates L-27 and C-9, and on maize in isolate M-11.  相似文献   

18.
Five separate monoclonal antibodies were produced against whole cell extracts ofAspergillus flavus and ELISA procedures used to characterise the reactivity of the antibodies to various fungal extracts. All five antibodies were specific to the aflatoxin producing fungi,A, flavus andA. parasiticus, and indicated no cross reactivity with otherAspergillus species, genera of several fungi or with other components which may be found in food samples whereA. flavus may be found.  相似文献   

19.
Preharvest seed infection byAspergillus flavus and aflatoxin contamination in selected groundnut genotypes (fourA. flavus-resistant and fourA. flavus-susceptible) were examined in different soil types at several locations in India in 1985–1990. Undamaged mature pods were sampled at harvest and seed examined forA. flavus infection and aflatoxin content in two or more trials at ICRISAT Center on light sandy soils and red sandy loam soils (Alfisols), and on Vertisols, at Anantapur on light sandy soils, and at Dharwad and Parbhani on Vertisols. Rainy season trials (1985–1989) were all rainfed. Post-rainy season trials were irrigated; late-season drought stress (90 days after sowing (DAS) until harvest at 125 DAS) was imposed in the 1987/88 and 1989/90 seasons.A. flavus infection and aflatoxin contamination levels were much lower in seed of all genotypes from Vertisols than in seed from Alfisols across locations and seasons. Vertisols also had significantly lower populations ofA. flavus than Alfisols. There were no marked differences between light sandy soils and red sandy loam soils (Alfisols) in respect of seed infection byA. flavus and aflatoxin contamination. Significant interactions between genotypes and soil types were evident, especially in theA. flavus-susceptible genotypes. Irrespective of soil types,A. flavus-resistant genotypes showed lower levels of seed infection byA. flavus and other fungi than didA. flavus-susceptible genotypes. The significance of the low preharvest aflatoxin risk in groundnuts grown on Vertisols is highlighted.ICRISAT Journal Article No. JA 1122  相似文献   

20.
In recent yearsAspergillus flavus and aflatoxin production have been noted on several occasions in grain preserved with formic acid. Samples of mouldy barley treated with formic acid and stored in an open bin were investigated for the presence of fungi. In the lower part of the bin there was a clear dominance ofFusarium sporotrichioides, and deoxynivalenol and neosolaniol were detected.A. flavus andA. fumigatus were also present.Paecilomyces variotii occurred, almost as a pure culture, in the upper part of the bin, but no patulin was found. Cultivation of four fungal isolates from these genera on laboratory substrates containing formic acid showedP. variotii to be the most tolerant to formic acid, withstanding 150 mM, but still without patulin production.F. sporotrichioides andA. fumigatus tolerated only 6 mM formic acid. The growth ofA. flavus was reduced and atypical at 60 mM formic acid. Pretreatment ofA. flavus spores with formic acid increased aflatoxin production about 800 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号