首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The parasitoidEucelatoria bryani Sabrosky regulates the larval behavior of its hostHelicoverpa zea (Boddie). Parasitized third, fourth and fifth instars burrow into the soil 0.7–3.4 days earlier than unparasitized larvae that normally enter the soil to pupate at the end of the fifth and final larval instar. Parasitized third instars molt once then burrow as fourth instars, one instar earlier than normal. WhenE. bryani pupariated on the soil surface in the field, none survived to the adult stage. However,E. bryani adults emerged from 49.2% of hosts that had burrowed into the soil. By accelerating the timing ofH. zea burrowing behavior and causing host larvae to enter the soil before death,E. bryani ensures its pupariation in an environment with improved protection against natural enemies and lethal temperatures.  相似文献   

2.
First instar Heliothis zea larvae tended to feed on the leaves of snap beans, but later instars preferred to burrow in the pods. Fifth instars offered only leaves grew poorly because they ate them in small quantities, presumably because of deterrency. The utilization efficiency and growth of fifth instars fed pulp was slightly but significantly inferior to that of seed-fed larvae but was greatly superior to that of leaf-fed larvae. Since the dry matter content of pulp is less than one-third that of seeds, larvae allowed to eat only pulp had abnormally large fresh weight intakes and devoted about three times as much time to feeding as did seed-fed larvae. Larvae offered a mix of seeds and pulp ate both and had a total fresh weight food intake somewhat greater than that of seed-fed larvae but much less than that of pulp-fed larvae. Eating both seeds and pulp offers no obvious nutritional advantage but presumably offers a significant ecological advantage. It is argued that the number of foraging trip a larva must make to discover pods is minimized by feeding on a mix, thus reducing exposure to mortality factors such as predation.  相似文献   

3.
Choh Y  Takabayashi J 《Oecologia》2007,151(2):262-267
We studied whether volatiles released by putative host plants affect the antipredator response of an herbivorous mite, Tetranychus urticae, when the patch was invaded by Phytoseiulus persimilis. Tetranychus urticae laid a lower number of eggs on tomato leaves than on lima bean leaves, suggesting that lima bean is a preferred host food source for T. urticae. In addition, T. urticae preferred lima bean plant volatiles to tomato plant volatiles in a Y-tube olfactometer test. To investigate the antipredator response of T. urticae, we examined the migration of T. urticae from a lima bean leaf disc to a neighbouring leaf disc (either a tomato or lima bean leaf disc) when ten predators were introduced into the original lima bean disc. A Parafilm bridge allowed for migration between the leaf discs. No migrations occurred between leaf discs when there were no predators introduced to the original leaf disc. However, when predators were introduced migrations did occur. When the neighbouring leaf disc was upwind of the original disc, the migration rate of the mite from original lima bean leaf disc to a neighbouring tomato leaf disc was significantly lower than that to a neighbouring lima bean leaf disc. By contrast, when the neighbouring leaf disc was downwind of the original leaf disc, there was no difference in the migration rates between lima bean leaf discs and tomato leaf discs. The number of T. urticae killed by P. persimilis for each treatment was not different, and this clearly shows that the danger was the same in all treatments regardless of the decision made by T. urticae. From these results, we conclude that T. urticae change their antipredator response by evaluating the difference in host plant volatiles in the patch they inhabit.  相似文献   

4.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Previous studies have shown that the diel activity pattern and functional response differed between larval instars of the carnivorous caddis, Rhyacophila dorsalis. The present study examines switching by larvae of R. dorsalis presented with different proportions of two prey types; either small (length 2–4 mm) and large (5–8 mm) Chironomus larvae for second, third, fourth and fifth instars of R. dorsalis; or Baetis rhodani (9–12 mm) and large Chironomus larvae for fourth and fifth instars. Experiments were performed in stream tanks with one Rhyacophila larva per tank and 200 prey arranged in nine different combinations of the two prey types (20 : 180, 40 : 160, 60 : 140, 80 : 120, 100 : 100, 120 : 80, 140 : 60, 160 : 40 and 180 : 20). Prey were replaced as they were eaten. A model predicted the functional response in the absence of switching and provided a null hypothesis against which any tendency to switch could be tested. 2. There was no prey switching in the second and third instars, with both instars always showing a preference for small over large Chironomus larvae. Prey switching occurred in the fourth and fifth instars. As the relative abundance of one prey type increased in relation to the alternative, the proportion eaten of the former prey changed from less to more than expected from its availability, the relationship being described by an S‐shaped curve. In the experiments with small and large Chironomus, the two instars switched to large larvae when their percentage of the total available prey exceeded 29% and 37% for fourth and fifth instars, respectively. In the experiments with Baetis and large Chironomus, both instars switched to Baetis larvae when their percentage of the total available prey exceeded 36%. 3. Non‐switching in second and third instars was related to their feeding strategies, both instars preferring smaller prey items. When the fourth and fifth instars foraged actively at night, they preferred larger over small Chironomus larvae, but when they behaved as ambush predators at dusk, they captured the more active Baetis larvae in preference to the more sedentary large Chironomus larvae and only switched to the latter when they were >64% of the available prey.  相似文献   

5.
Quantifying the rate of dispersal of target insects when infected with a disease agent will aid the development of biorational pest control programs. The effect of nucleopolyhedrovirus (NPV) infection on the mobility of second and fourth instarMamestra brassicaelarvae was investigated in the laboratory and field. NPV infection altered larval mobility, with the changes in behavior varying with the timecourse of infection. Diseased larvae moved three to five times further than healthy ones during the middle stages of infection. By the 7th day postinfection diseased larvae were less mobile than healthy counterparts. The same pattern of modified behavior was observed in both instars. Fourth instar larvae moved further than second instars under laboratory and field conditions. In the field, infected larvae tended to die on the apex of the cabbage leaves. Bioassay of the leaves showed a linear decrease in inoculum from central to peripheral plants within the plots, which occurred to the same extent for second and fourth instars. Leaves from plots where infected fourth instar larvae had been introduced had higher inoculum density than those from plots with second instars.  相似文献   

6.
Naturally occurring populations of immature and adultGeocoris punctipes,adultColeomegilla maculataand immature coccinellids were monitored on field-grown tomato lines susceptible and resistant toManduca sextaandHelicoverpa zea. Helicoverpa zeaandHeliothis virescenseggs and small larvae that serve as prey for these predators also were monitored. MoreH. zeaandH. virescenseggs and small larvae were found on resistant than on susceptible plant lines. However, similar populations of largeH. zeaandH. virescenslarvae were found on resistant and susceptible plants. The number of adultGeocoris punctipes,adultColeomegilla maculataand immature coccinellids on resistant plants was always as high or higher than the number on susceptible plants. The data demonstrate no incompatibility of host-plant resistance with biological control provided by these predaceous insects, but indicate that the number ofG. punctipesand coccinellids required to provide effective biological control may develop too late in the season to be of practical value. Large populations of stilt bugs (Jalysus wickhami,Hemiptera: Berytidae) and spiders were observed to occur earlier in the growing season than eitherG. punctipesor coccinellids and may be a significant source of mortality forH. zeaeggs and small larvae.  相似文献   

7.
ABSTRACT.
  • 1 All instars of Spodoptera eridania larvae grow as well or better when cyanide is present in their diet as when it is absent. Concentrations up to 0.05% stimulate feeding in first to fourth instar larvae. Concentrations from 0.1% to 1.0% stimulate feeding in fifth and sixth instar larvae.
  • 2 Three-day-old sixth instar larvae pre-exposed to cyanide are completely resistant to its acutely toxic effects, but previously unexposed larvae suffer reversible symptoms of poisoning when feeding on a diet containing 1.0% KCN.
  • 3 A 1.0% dietary KCN exposure during the sixth instar reduces ecdysis to 17% adult emergence and completely inhibits oviposition.
  • 4 Cyanide concentrations from 0.5% to 1.0% in the diet, although effecting increased growth rates, induce necrotic lesions in larval mid-gut epithelial cells.
  • 5 Thiocyanate, one of the in vivo cyanide metabolites, at 0.5% in the diet reduces pupation to 23%, delays and reduces adult emergence to 20% and inhibits oviposition.
  • 6 The preferred host plant of S.eridania is the lima bean, Phaseolus lunatus, probably due to its content of the cyanogenic glycoside linamarin. Dietary valine has no effect on the southern armyworm feeding and growth behaviour (Long & Brattsten, 1982) but dietary cyanide does. The lima bean is known to contain up to 31 ppm cyanide in some varieties.
  相似文献   

8.
We investigated the response of the specialist insect predator Oligota kashmirica benefica (Coleoptera: Staphylinidae) to volatiles from lima bean leaves infested with the spider mite Tetranychus urticae (Acari: Tetranychidae), both in a Y-tube olfactometer and in a field in Kyoto, Japan. Adult male and female predators were significantly more attracted to T. urticae-infested leaves than to clean air. Adult male and female predators were not more attracted to uninfested leaves, artificially damaged leaves, or the spider mites and their visible products when compared to clean air. In a field trap experiment, 12 adult predators were caught in three traps containing T. urticae-infested lima bean plants over 13 days, whereas no adult predators were trapped in three traps containing uninfested lima bean plants during the same period. These results showed that O. kashmirica benefica adults responded to herbivore-induced plant volatiles from T. urticae-infested lima bean leaves under both laboratory and field conditions.  相似文献   

9.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

10.
The ED50 of a strain of Serratia marcescens for microinjected instar III and IV gypsy moth larvae was 7.5 and 14.5 viable cells, respectively. Percentage and rate of mortality were found to be highly variable among replicates of the same instar and between instars in free-feeding bioassays. Mortality in second instar larvae occurred before ecdysis, whereas practically no mortality occurred in third and fourth instars until the molting period. Neither Boivin endotoxin preparations nor culture filtrates were toxic to instar III larvae when administered per os or by microinjection. Histological evidence indicated that the microorganism invaded the hemocoel of healthy or predisposed insects through the gut wall. The rapid multiplication of the bacterium in the hemocoel of infected insects, followed by death in the absence of extensive tissue damage, indicated mortality was due to a septicemia. The histological and biological evidence presented indicated that the microorganism would be less than effective if utilized as a conventional microbial insecticide.  相似文献   

11.
Among herbivorous insects, the ability to change adaptive traits plastically in response to novel host plants is advantageous for coping with sudden environmental shifts. The host plants in our study were two closely related species, viz., Arabis flagellosa (tougher leaves, i.e., they are physically defended) and A. gemmifera (softer leaves that are physiologically defended). We demonstrated that young larvae of the butterfly Pieris napi are able to plastically change head size during development in response to changes in food plant species. When larvae were fed the physically defended A. flagellosa, the head sizes of third instar larvae emerging from eggs originally collected from leaves of both A. flagellosa and A. gemmifera became identically larger. When larvae fed on the physiologically defended A. gemmifera, the head sizes of third instar larvae emerging from eggs originally collected from leaves of both A. flagellosa and A. gemmifera became identically smaller. When leaves of A. flagellosa were presented to fourth instars reared on A. flagellosa, larvae with larger heads consumed more food than those with smaller heads. In contrast, when leaves of the physiologically defended A. gemmifera were presented to fourth instar larvae reared on A. gemmifera, larvae with smaller heads processed more food than those with larger heads. Hence, larvae of P. napi retain the capacity for adaptive plastic responses to novel host plant species.  相似文献   

12.
Diet choice tests were conducted to examine the effects of Bacillus thuringiensis Berliner on larval feeding behavior of Dipel-resistant and susceptible strains of European corn borer, Ostrinia nubilalis (Hübner). Larvae (first through fourth instars) were presented an untreated standard diet and three diets incorporating different concentrations of a commercial formulation of B. thuringiensis, Dipel ESTM. Significantly higher proportions of susceptible and resistant larvae were found on the control diet compared to the proportions recorded on any of the Dipel-treated diets. Soon after release (0.5 to 3 h), the occurrence of larvae on each of the diets was similar across different instars. The number of first and second instars on the control diet increased steadily over 72 h after release, when 43 to 75% of larvae were found on the control diet. The proportion of third and fourth instars on the control diet also increased initially, with an equilibrium occurring 12 to 24 h later when 30 to 40% of larvae were found on the control diet. Both strains appeared to avoid the Dipel-treated diets and their responses were similar over different Dipel concentrations. The Dipel-resistant strain showed higher ability to avoid the treated diets than the susceptible strain.  相似文献   

13.
Gypsy moth larvae become increasingly resistant to lethal infection by the Lymantria dispar M nucleopolyhedrovirus (LdMNPV) as they age within the fourth instar. Newly molted larvae are most sensitive to infection, mid-instars are least sensitive, and late-instars display intermediate sensitivity. This resistance occurs whether the virus is delivered orally or intrahemocoelically. The present study reveals a nearly identical pattern of resistance in third instar larvae. An LD48 dose of polyhedra for newly molted third instars produced 18%, 10%, 8%, 25%, and 24% mortalities in larvae to which virus was orally administered at 12, 24, 48, 72, and 96 hours post-molt (hpm), respectively, which is a 6-fold reduction in mortality between newly molted larvae and mid-instars. An LD44 dose of budded virus for newly molted third instars produced 33%, 23%, 17%, 31%, and 31% mortalities when injected into larvae that were 12, 24, 48, 72, and 96 hpm, respectively, which is a 2.6-fold reduction in mortality between newly molted larvae and mid-instars, indicating that approximately half of this resistance is midgut-based and half is systemically based. Doubling the viral dose did not overcome developmental resistance whether the virus was delivered orally or intrahemocoelically. In addition, time to death was significantly affected by the time post-molt at which the insect was inoculated with the virus. We suggest that intrastadial developmental resistance may affect both the ecology and management of the gypsy moth.  相似文献   

14.
New techniques are presented on the use of 15N to mark insects. 15N, a stable isotope of nitrogen, was enriched above natural abundance in plant and insect tissues. Two laboratory studies demonstrated that enriched 15N-concentrations could be tracked from plant to insect using mass spectrometry. In the first study, adult Cotesia plutellae (Kurdjimov) (Hymenoptera: Braconidae) and Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) were allowed to feed at the flowers of rapid-cycling Chinese cabbage plants that had been fertilized with 15N-enriched potassium nitrate (KNO3-15NO3). Both insect groups were found to have significantly elevated 15N levels after visiting the flowers of the 15N-enriched plants for 48 hours. In the second study, 15N-enriched bean plant (Phaseolus vulgaris L.) tissue was incorporated into an insect diet and fed to navel orangeworms, Amyelois transitella (Walker) (Lepidoptera: Pyralidae). When the navel orangeworm larvae were 4th instars, they were removed from the diet and exposed to the parasitoid, Goniozus legneri Gordh (Hymenoptera: Bethylidae). Results indicated that the enriched 15N-concentration of the bean plants was transferred to the navel orangeworms and, subsequently, to the parasitoids. This work may provide useful techniques to help establish whether agriculturally important entomophaga visiting 15N-enriched flowers or parasitizing enriched sentinel larvae in the field can be effectively marked with 15N.  相似文献   

15.
Small-sized predators in the aphidophagous guild of Aphis gossypii Glover colonies on hibiscus trees in Japan exploit aphids at low prey abundance. Scymnus (Pullus) posticalis Sicard beetles were the first predatory species to attack aphids in the spring, and their larvae co-occurred with larvae of Eupeodes freguens (Matsumura) syrphids in aphid-infested leaves of hibiscus for 3 weeks in absence of large-sized coccinellid predators. Larval interaction between Scymnus and syrphid predators was examined in relation to effectiveness of wax cover of Scymnus against predation from syrphids. Waxless first instar larvae were not protected but wax-covered larvae of second, third and fourth instars were protected from predation by syrphid larvae. The protection was lower in the second instar which has a thin wax cover and significantly higher in the third and fourth instars having a thick wax cover. In addition, larvae from which the wax was removed were significantly more vulnerable to predation. Vulnerability of Scymnus larvae to predation from syrphids was directly related to the thickness of wax cover. Results suggest that the wax cover of Scymnus larvae act as an effective defence mechanism against predation from syrphid larvae.  相似文献   

16.
Laboratory studies were done to measure predation by adult damsel bugs,Nabis roseipennis Reuter [Heteroptera: Nabidae], on 3rd instar larvae of Mexican bean beetle (MBB),Epilachna varivestis Mulsant [Coleoptera: Coccinellidae], and to measure longevity and body weight of the nabids. In the 1st experiment, field-collected nabids were isolated for 24h in 9 cm Petri dishes with lima bean foliage (Phaseolus lunatus L.) and were assigned to one of 3 prey treatments: either 4 3rd-instar MBB larvae, 4 3rd-instar larvae of boll weevil (BW),Anthonomus grandis Boheman [Coleoptera: Curculionidae], or 2 larvae of each species. No MBB larvae were attacked in either the MBB treatment or 2-species treatment. In contrast, BW larvae were attacked in both BW and 2-species treatments. Significantly more BW larvae were attacked in the BW treatment than in the 2-species treatment, and both were greater than the number of MBB larvae attacked. Nabids that did not attack prey lost weight during the 24 h, whereas those that attacked prey gained weight. In the 2nd experiment, nabids that had attacked prey were isolated with lima foliage, and nabids that had not attacked prey were kept with MBB and lima foliage until an attack or death. In no instances were MBB attacked. Longevity and the pattern of weight loss did not differ between nabids that did or did not attack prey. We discuss possible reasons for the failure ofN. roseipennis to attack MBB larvae, as well as the implications for using nabids to influence pest populations in the field.   相似文献   

17.
Phytodecta fornicata Brüggemann is a serious pest of alfalfa (Medicago sativa L.) that causes significant crop loss in the Balkan peninsula of Europe. We introduced a wound-inducible oryzacystatin II (OCII) gene to alfalfa to evaluate its effect on survival of P. fornicata larvae. Feeding bioassays with second, third and fourth instars were carried out using transgenic plants that were shown to express OCII at 24 and 48 h after wounding. Second and third instars were the most sensitive to the ingestion of OCII, whereas no effects were observed with fourth instars. About 80% of the second and third instars died after 2 days of feeding on the transgenic plants as compared to 0–40% on the controls. This is the first report that demonstrates significant increase in mortality of P. fornicata on transgenic plants that express a cysteine proteinase inhibitor gene, and this knowledge should lead to the development of effective management strategies for this devastating pest of alfalfa.  相似文献   

18.
We have characterized, using several types of bioassays, the resistance induced in young tomato plants by feeding of the corn earworm, Helicoverpa zea. Beet armyworm larvae, Spodoptera exigua, and leafminers, Liriomyza trifolii, were used to assay the induced resistance. In whole-plant experiments, damage localized to a single leaflet of fourleaf tomato plants induced a systemic increase in resistance such that beet armyworm larvae confined to previously damaged (induced) plants grew at a rate about half that of larvae raised on control plants and consumed less leaf tissue from induced plants than from control plants. In experiments using excised leaves, beet armyworm larvae suffered increased mortality when reared on leaves from induced plants. The strength of this induced resistance varied spatially relative to the damaged position; moreover, the spatial distribution of induced resistance changed over a three-week period following damage. Other experiments demonstrated that the mechanisms of induced resistance in tomato foliage involves both a decrease in larval preference for and a decrease in the nutritional value of induced foliage. Induction also retarded the oviposition and/or early development of leafminers. Thus, induced resistance has relatively severe effects on the biology of subsequent herbivores. These data should allow us to begin to elucidate cause-effect relationships between induced resistance and induced chemistry in tomato plants.  相似文献   

19.
Dose– and time–mortality relationships of baculoviruses in pest insects are important for the determination of effective spraying regimes. A series of experiments with Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV) against synchronized populations of S. exigua larvae in greenhouse chrysanthemum was conducted. Dose– and time–mortality relationships of different virus concentrations and S. exigua target stages were determined and the area foliage consumption was measured. Crop injury was greatly reduced when S. exigua were controlled as second or third instar larvae, whereas virus applications against fourth instar larvae could not prevent considerable crop injury, even at high concentrations. SeMNPV was approximately 10 times as infectious as AcMNPV when applied on greenhouse chrysanthemum. The relative virulence of AcMNPV and SeMNPV corresponded reasonably well with previously published laboratory bioassay data. SeMNPV killed second and fourth instar S. exigua larvae approximately 12 h faster than did AcMNPV in chrysanthemum, but no difference in speed of action was found for third instar larvae. The relative speed of action of AcMNPV and SeMNPV determined in chrysanthemum and in laboratory bioassays did not correspond for third instar S. exigua larvae; laboratory bioassay data can therefore not simply be extrapolated to the crop level.  相似文献   

20.
Enzyme-linked immunosorbent assays (ELISA) and bioassays were used to estimate levels of Cry1Ab protein in four species of phytophagous insects after feeding on transgenic Bt-corn plants expressing Cry1Ab protein or artificial diets containing Cry1Ab protein. The level of Cry1Ab in insects feeding on sources containing the Cry1Ab protein was uniformly low but varied with insect species as well as food source. For the corn leaf aphid, Rhopalosiphum maidis (Fitch), feeding on diet solutions containing Cry1Ab protein, the level of the protein in the aphid was 250–500 times less than the original levels in the diet, whereas no Cry1Ab was detected by ELISA in aphids feeding on transgenic Bt-Corn plants. For the lepidopteran insects, Ostrinia nubilalis (Hübner), Helicoverpa zea (Boddie), and Agrotis ipsilon (Hufnagel), levels of Cry1Ab in larvae varied significantly with feeding treatment. When feeding for 24 h on artificial diets containing 20 and 100 ppm of Cry1Ab, the level of Cry1Ab in the larvae was about 57 and 142 times lower, respectively, than the original protein level in the diet for O. nubilalis, 20 and 34 times lower for H. zea, and 10 to 14 times lower for A. ipsilon. Diet incorporation bioassays with a susceptible insect (first instar O. nubilalis) showed significant Cry1Ab bioactivity present within whole body tissues of R. maidis and O. nubilalis that had fed on diet containing a minimum of 20 ppm or higher concentrations (100 or 200 ppm) of Cry1Ab, but no significant bioactivity within the tissues of these insects after feeding on transgenic Bt-corn plants. The relevance of these findings to secondary exposure risk assessment for transgenic Bt crops is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号