首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
The genomes of bovine leukemia and human T-cell leukemia viruses both contain an unidentified region between the gag and pol genes. These regions harbor an open reading frame that is in a different phase from the reading frames of the gag and pol genes. Based on the deduced amino acid sequences, we show here that they potentially encode a gag precursor-cleaving protease, which is known to be fused to the gag and pol products of avian and murine retroviruses, respectively. This finding raises the interesting question of the expression and evolution of retroviral genes.  相似文献   

5.
Like most retroviruses and retrotransposons, the retrotransposon Ty3 expresses its pol gene analog (POL3) as a translational fusion to the upstream gag analog (GAG3). The Gag3-Pol3 fusion occurs by frameshifting during translation of the mRNA that encodes the two separate but overlapping ORFs. We showed previously that the shift occurs by out-of-frame binding of a normal aminoacyl-tRNA in the ribosomal A site caused by an aberrant codonoanticodon interaction in the P site. This event is unlike all previously described programmed translational frameshifts because it does not require tRNA slippage between cognate or near-cognate codons in the mRNA. A sequence of 15 nt distal to the frameshift site stimulates frameshifting 7.5-fold. Here we show that the Ty3 stimulator acts as an unstructured region to stimulate frameshifting. Its function depends on strict spacing from the site of frameshifting. Finally, the stimulator increases frameshifting dependent on sense codon-induced pausing, but has no effect on frameshifting dependent on pauses induced by nonsense codons. Complementarity between the stimulator and a portion of the accuracy center of the ribosome, Helix 18, implies that the stimulator may directly disrupt error correction by the ribosome.  相似文献   

6.
About 1.9% of ribosomes translating the gag open reading frame of the yeast L-A double-stranded RNA virus positive strand undergo a -1 frameshift and continue translating in the pol open reading frame to make a 170-kDa gag-pol fusion protein. The importance of frameshifting efficiency for viral propagation was tested in a system where the M1 (killer toxin-encoding) satellite RNA is supported by a full-length L-A cDNA clone. Either increasing or decreasing the frameshift efficiency more than twofold by alterations in the slippery site disrupted viral propagation. A threefold increase caused by a chromosomal mutation, hsh1 (high shifter), had the same effect. Substituting a +1 ribosomal frameshift site from Ty1 with the correct efficiency also allowed support of M1 propagation. The normal -1 frameshift efficiency is similar to the observed molar ratio in viral particles of the 170-kDa gag-pol protein to the 70-kDa gag gene product, the major coat protein. The results are interpreted in terms of a packaging model for L-A.  相似文献   

7.
8.
9.
10.
Ty3 encodes structural proteins in its upstream open reading frame (GAG3) and catalytic proteins in an overlapping open reading frame (POL3). As is the case for retroviruses, high levels of structural protein versus catalytic proteins are synthesized and we show here that catalytic proteins are derived from a GAG3-POL3 fusion polyprotein. To evaluate the relative contributions of structural and catalytic components of the Ty3 particle, we perturbed the balance of these proteins by fusing the GAG3 and POL3 frames. This fusion Ty3 was capable of complementing low levels of transposition of a donor Ty3 which contained only cis-acting sequences required for transposition. Examination of extracts of cells expressing the GAG3-POL3 fusion mutant showed that particle formation differed qualitatively and quantitatively from viruslike particle formation by wild-type Ty3. Suprisingly, expression of 238 codons of GAG3, encoding only capsid protein, complemented transposition and particle formation defects of the fusion mutant, showing that the limiting deficiency was in capsid, and not in nucleocapsid, function. In addition, protein containing the capsid domain expressed alone accumulated in the same particulate fraction as viruslike particles, showing that it was sufficient for particle formation. The activity of the Ty3 fusion mutant contrasts with the inviability of mutant retroviruses in which gag and pol frames were fused and argues that retrotransposons tolerate considerable variation in the nucleoprotein complexes that permit replication and integration.  相似文献   

11.
12.
Many retroviruses express gag-pol or gag-pro-pol polypeptides by coupling their translation from overlapping reading frames with -1 ribosomal frameshifts. Here, we show that the well-known ribosomal frameshift signals found in retroviral mRNA will provoke Escherichia coli ribosomes to shift frame in the same manner as their eukaryotic counterparts. Ribosomes of E. coli respond in vivo to both the tandem slippery codons present at the retroviral frameshift site and the 3' flanking sequence. Slight alteration of the mouse mammary tumor virus gag-pro frameshift site from A-AAA-AAC to A-AAA-AAG boosts the level of frameshifting in E. coli to over 50%. This suggests that A-AAA-AAG, and its slippery relatives, may be utilized by E. coli genes as sites of high-level ribosomal frameshifting. This observed conservation of response to retroviral frameshift signals affords new avenues to dissect the mechanism of ribosomal frameshifting evoked by these mRNA sequences.  相似文献   

13.
14.
The pol gene of all retroviruses is expressed as a gag-pol fusion protein which is proteolytically processed to produce all viral enzymes. In the human immunodeficiency virus (HIV), the gag and pol genes overlap by 241 nucleotides with pol in the -1 phase with respect to gag. The gag-pol fusion is produced via a -1 ribosomal frameshifting event that brings the overlapping, out-of-phase gag and pol genes into translational phase. Frameshifting occurs at a so called 'shift site' 8-10 nucleotides upstream of a hairpin loop which may play a role in the regulation of frameshifting. We have fused this region of HIV-1 to the 5' end of the firefly luciferase reporter gene in order to quantitatively measure ribosomal frameshifting both in cells and by in vitro translation. A series of 2'-O-methyl oligonucleotides was designed to specifically bind the sequences which flank the gag-pol hairpin. Ribosomal frameshifting is enhanced up to 6 fold by those oligonucleotides which bind the area just 3 to the stem. Oligonucleotides which bind 5' to the stem have no effect on frameshift efficiency. In addition, we have constructed a series of fusion genes which mimic the effect of the bound oligonucleotides with intramolecular hairpins. The results suggest that increasing RNA secondary structure downstream of the shift site increases the frequency of ribosomal frameshifting, and that this effect can be mimicked by antisense oligonucleotides.  相似文献   

15.
H Falk  N Mador  R Udi  A Panet    A Honigman 《Journal of virology》1993,67(10):6273-6277
The open reading frame of the human T-cell leukemia virus type II pro gene is arranged at a -1 position relative to the gag gene. Synthesis of the Gag-Pro fusion polyprotein is facilitated by ribosomal frameshift into the reading frame of the pro gene. Cloning of a synthetic 41-bp oligonucleotide corresponding to the gag-pro junction within a heterologous gene (nef of human immunodeficiency virus type I) and mutation analysis revealed that two cis-acting signals, an adenosine residue stretch and a dyad symmetry sequence, flanking the UAA termination codon, are required for efficient ribosomal frameshifting between gag and pro. The stability of the stem-loop structure is crucial for frameshifting.  相似文献   

16.
Chen C  Montelaro RC 《Journal of virology》2003,77(19):10280-10287
Synthesis of Gag-Pol polyproteins of retroviruses requires ribosomes to shift translational reading frame once or twice in a -1 direction to read through the stop codon in the gag reading frame. It is generally believed that a slippery sequence and a downstream RNA structure are required for the programmed -1 ribosomal frameshifting. However, the mechanism regulating the Gag-Pol frameshifting remains poorly understood. In this report, we have defined specific mRNA elements required for sufficient ribosomal frameshifting in equine anemia infectious virus (EIAV) by using full-length provirus replication and Gag/Gag-Pol expression systems. The results of these studies revealed that frameshifting efficiency and viral replication were dependent on a characteristic slippery sequence, a five-base-paired GC stretch, and a pseudoknot structure. Heterologous slippery sequences from human immunodeficiency virus type 1 and visna virus were able to substitute for the EIAV slippery sequence in supporting EIAV replication. Disruption of the GC-paired stretch abolished the frameshifting required for viral replication, and disruption of the pseudoknot reduced the frameshifting efficiency by 60%. Our data indicated that maintenance of the essential RNA signals (slippery sequences and structural elements) in this region of the genomic mRNA was critical for sufficient ribosomal frameshifting and EIAV replication, while concomitant alterations in the amino acids translated from the same region of the mRNA could be tolerated during replication. The data further indicated that proviral mutations that reduced frameshifting efficiency by as much as 50% continued to sustain viral replication and that greater reductions in frameshifting efficiency lead to replication defects. These studies define for the first time the RNA sequence and structural determinants of Gag-Pol frameshifting necessary for EIAV replication, reveal novel aspects relative to frameshifting elements described for other retroviruses, and provide new genetic determinants that can be evaluated as potential antiviral targets.  相似文献   

17.
The Ty3/gypsy family of retroelements is closely related to retroviruses, and some of their members have an open reading frame resembling the retroviral gene env. Sequences homologous to the gypsy element from Drosophila melanogaster are widely distributed among Drosophila species. In this work, we report a phylogenetic study based mainly on the analysis of the 5' region of the env gene from several species of the obscura group, and also from sequences already reported of D. melanogaster, Drosophila virilis, and Drosophila hydei. Our results indicate that the gypsy elements from species of the obscura group constitute a monophyletic group which has strongly diverged from the prototypic D. melanogaster gypsy element. Phylogenetic relationships between gypsy sequences from the obscura group are consistent with those of their hosts, indicating vertical transmission. However, D. hydei and D. virilis gypsy sequences are closely related to those of the affinis subgroup, which could be indicative of horizontal transmission.  相似文献   

18.
19.
G Moore  H Lucas  N Batty  R Flavell 《Genomics》1991,10(2):461-468
A family of related retroelements was characterized in the genomes of some Graminease species. The structure of these retroelements indicates that they are retrotransposons containing reading frames with sequence similarity to the polyproteins of copia and Ty. This family of retroelements (termed WIS-2) occurs in the genomes of barley, wheat, rye, oats, and Aegilops species. Ongoing genomic variation both within individual plants of a wheat variety and within and between varieties of wheat is associated with some members of the WIS-2 family.  相似文献   

20.
Polyamine sensing during antizyme mRNA programmed frameshifting   总被引:8,自引:0,他引:8  
A key regulator of cellular polyamine levels from yeasts to mammals is the protein antizyme. The antizyme gene consists of two overlapping reading frames with ORF2 in the +1 frame relative to ORF1. A programmed +1 ribosomal frameshift occurs at the last codon of ORF1 and results in the production of full-length antizyme protein. The efficiency of frameshifting is proportional to the concentration of polyamines, thus creating an autoregulatory circuit for controlling polyamine levels. The mRNA recoding signals for frameshifting include an element 5' and a pseudoknot 3' of the shift site. The present work illustrates that the ORF1 stop codon and the 5' element are critical for polyamine sensing, whereas the 3' pseudoknot acts to stimulate frameshifting in a polyamine independent manner. We also demonstrate that polyamines are required to stimulate stop codon readthrough at the MuLV redefinition site required for normal expression of the GagPol precursor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号