首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Extra-floral nectaries of nine species of Passiflora were studied with light and electron microscopy prior to and during secretion. There is no evidence of ER or Golgi participation in the secretion of nectar. The vascular tissue supplying the nectary is characterized by companion and phloem parenchyma cells which are usually larger than the sieve elements, a configuration similar to that found in leaf minor veins. In the petiolar nectaries, large masses of membrane-bound protein are commonly found in these cells. This protein is absent in laminar nectaries.  相似文献   

2.
垂柳雌花蜜腺一枚,位于于房与花序轴之间,多呈扁平广卵形,由分泌表皮、泌蜜组织和维管束组成。雄花蜜腺呈基部相连的两枚突起,一枚位于花丝与花序轴之间,基部宽扁,上部棒状;另一枚位于花丝与苞片之间,棒状,仅由分泌表皮和泌蜜组织组成。雌、雄花蜜腺均起源于花托表面2—3层细胞。在蜜腺发育过程中,雌、雄花蜜腺泌蜜组织细胞的液泡发生规律性变化.雌花蜜腺为淀粉型蜜腺,而雄花蜜腺为非淀粉型蜜腺。雌、雄花蜜腺的原宜汁分别由蜜腺维管束韧应部或花丝维管束韧皮部提供,其蜜计最后均由分泌表皮细胞和变态气孔排出。  相似文献   

3.
油菜花蜜腺发育过程的超微结构变化与泌蜜机理的研究   总被引:4,自引:0,他引:4  
油菜花蜜腺由2枚侧蜜腺和2枝中蜜腺组成,其基本结构类似。在蜜腺发育过程中,产蜜组织细胞内的内质网、高尔基体、质体和线粒体以及液泡都发生有规律变化。泌蜜前,细胞器的数量增加。其中,质体内积累淀粉,此过程与蜜腺内初皮部的分化并和线粒体的增加相关。泌蜜时,内质网数量增多,并产生小泡.小泡向质膜移动。泌蜜后,细胞液泡化,细胞器数量减少,细胞萎缩。根据观察结果分析,其原蜜汁来源于韧皮部,转运至产蜜组织细胞的质体、内质网和高尔基体内加工成蜜汁,最后通过胞吐和渗透相结合的方式泌出。  相似文献   

4.
Summary The floral nectary ofPisum sativum L. is situated on the receptacle at the base of the gynoecium. The gland receives phloem alone which departed the vascular bundles supplying the staminal column. Throughout the nectary, only the companion cells of the phloem exhibited wall ingrowths typical of transfer cells. Modified stomata on the nectary surface served as exits for nectar, but stomatal pores developed well before the commencement of secretion. Furthermore, stomatal pores on the nectary usually closed by occlusion, not by guard-cell movements. Pore occlusion was detected most frequently in post-secretory and secretory glands, and less commonly in pre-secretory nectaries. A quantitative stereological study revealed few changes in nectary fine structure between buds, flowers secreting nectar, and post-secretory flowers. Dissolution of abundant starch grains in plastids of subepidermal secretory cells when secretion commenced suggests that starch is a precursor of nectar carbohydrate production. Throughout nectary development, mitochondria were consistently the most plentiful organelle in both epidermal and subepidermal cells, and in addition to the relative paucity of dictyosomes, endoplasmic reticulum, and their associated vesicles, the evidence suggests that floral nectar secretion inP. sativum is an energy-requiring (eccrine) process, rather that granulocrine.Abbreviations ER endoplasmic reticulum - GA glutaraldehyde - SEM scanning electron microscopy  相似文献   

5.
The floral and foliar nectaries of Turnera ulmifolia are specialized and are representative of others found in the Turneraceae. The foliar and floral nectary systems must be treated independently. Foliar nectaries are organized into a definite structure (composed of a base, rim, secretory tissue, modified epidermis) and are supplied with vascular tissue composed of both xylem and phloem. Nectar from foliar nectaries contained equal concentrations of glucose, fructose, and sucrose. Floral nectaries are an integral part of the basal portion of each filament. The nectariferous tissue is not supplied with vascular tissue and secretion lasts only a few hours. Nectar from these staminal nectaries yielded a sucrose-dominant nectar containing also fructose, glucose, an unknown, and a trace amount of melezitose. Observations of flowering confirmed the reported short duration of the individual flowers.  相似文献   

6.
荇菜花蜜腺的发育研究   总被引:1,自引:0,他引:1  
荇菜花蜜腺的发育过程可分为:起源期、生长期、分泌期以及泌蜜停止期等4个时期。荇菜的5枚花蜜腺均起源于子房基部的表皮及表皮内的2-4层细胞。这些细胞经反分化后分别成为蜜腺的原分泌表皮及原泌蜜组织,两部分细胞径不断地分裂分化,最冬成为成熟蜜腺。在蜜腺发育过程中,蜜腺的分泌表皮及蜜腺组织内的内质网、质体、线粒体、液泡等细胞器结构均发生了有规律的变化,内质网在蜜腺分泌期最为发达,且产生大量的分泌小泡。质体  相似文献   

7.
黄杨花单性,雌雄同株,雄花花蜜腺4枚,乳头状,着生于退化雌蕊子房顶部;雌花花蜜腺3枚,短柱状,位于3枚花柱之间。雌、雄花蜜腺均由分泌表皮、产蜜组织和维管束构成,在发育过程中产蜜组织细胞的液泡都发生有规律的变化。雌花蜜腺大,属非淀粉型蜜腺,泌蜜量大,蜜汁含糖分多,维管束中仅含韧皮部;雄花蜜腺小,属淀粉型蜜腺,泌蜜量小.蜜汁含糖量小,维管束由木质部和韧皮部构成。  相似文献   

8.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

9.
The occurrence, morphology, ontogeny, structure and preliminary nectar analysis of floral and extrafloral nectaries are studied inKigelia pinnata of the Bignoniaceae. The extrafloral nectaries occur on foliage leaves, sepals and outer wall of the ovary, while the floral nectary is situated around the ovary base as an annular, massive, yellowish ring on the torus. The extrafloral nectaries originate from a single nectary initial. The floral nectary develops from a group of parenchymatous cells on the torus. The extrafloral nectaries are differentiated into multicellular foot, stalk and cupular or patelliform head. The floral nectary consists of parenchymatous tissue. The floral nectaries are supplied with phloem tissue. The secretion is copious in floral nectary. Function of the nectary, preliminary nectar analysis, and symbiotic relation between nectaries and animal visitors are discussed.  相似文献   

10.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

11.
NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida   总被引:2,自引:0,他引:2  
To study the molecular regulation of nectary development, we cloned NEC1, a gene predominantly expressed in the nectaries of Petunia hybrida, by using the differential display RT-PCR technique. The secondary structure of the putative NEC1 protein is reminiscent of a transmembrane protein, indicating that the protein is incorporated into the cell membrane or the cytoplast membrane. Immunolocalization revealed that NEC1 protein is present in the nectaries. Northern blot analyses showed that NEC1 is highly expressed in nectary tissue and weakly in the stamen. GUS expression driven by the NEC1 promoter revealed GUS activity in the outer nectary parenchyma cells, the upper part of the filament and the anther stomium. The same expression pattern was observed in Brassica napus. GUS expression was observed as blue spots on the surface of very young nectaries that do not secrete nectar and do accumulate starch. GUS expression was highest in open flowers in which active secretion of nectar and starch hydrolysis had taken place. Ectopic expression of NEC1 resulted in transgenic plants that displayed a phenotype with leaves having 3-4 times more phloem bundles in mid-veins than the wild-type Petunia. The possible role of NEC1 gene in sugar metabolism and nectar secretion is discussed.  相似文献   

12.
荆条花蜜腺发育解剖学研究   总被引:2,自引:0,他引:2  
荆条(Vitex chinensis Mill.)花蜜腺属于淀粉型子房蜜腺,呈圆筒状环绕于子房的基部。蜜腺外观上无特殊结构,表面有。由分泌表皮和泌蜜组织组成,包括分泌表皮、气孔器、泌蜜薄壁组织和维管束。密腺和子房壁起源相同。花蕾膨大期,泌蜜组织细胞中产生大液泡;露冠期,泌蜜组织中形成维管束;花蕾初放期,分泌表皮细胞分化形成气孔器,无气孔下室,淀粉粒的积累在此期达到高峰;盛花期,蜜腺中已无淀粉粒,密  相似文献   

13.
采用高压冷冻和低温替代技术对不同时期泌蜜前、泌蜜早期和泌蜜晚期的拟南齐(Arabidopsisthaliana L.)成熟花蜜腺的超微结构进行了研究。着重对小泡运输过程中是否与细胞质膜发生融合以及蜜腺组织中深色细胞与伴胞的区别等问题进行了讨论。拟南芥花中有一对较大的侧蜜腺以及2~4枚中蜜腺。中蜜腺位于2枚长雄蕊基部或它们之间,而侧蜜腺则位于两花瓣之间的短雄蕊附近。泌蜜前和泌蜜期,液泡的大小、高尔基体及内质网的数量、线粒体的分布以及质体内淀粉粒的大小都会发生一定的变化。当高尔基小泡从细胞内运输至细胞外时,并没有发生与细胞质膜融合的过程,与经典的“胞吐”假说不同。深色细胞在泌蜜期大量出现与筛分子旁的伴胞明显不同,前者与蜜腺顶端的气孔器相连,形成“通道”从而使蜜汁从蜜腺排出。  相似文献   

14.
The structure and ultrastructure of the nectaries of the monoeciousspecies Ecballium elaterium were studied. Large differencesin size and structure of the nectaries were observed in thetwo genders of flowers, those of the staminate flowers beingmuch larger and more developed than those of the pistillateflowers. The latter do not secrete measurable amounts of nectar.In the nectariferous cells, especially of the staminate flowers,numerous plasmodesmata are present. The pre-nectar originatingin the phloem is stored in the plastids of the nectariferouscells primarily as starch grains. The nectar appears to be exudedfrom the nectary via modified stomata. Very small insects ofthe order Hemiptera were found to dwell inside the flowers ofthe two genders, but in different numbers; their number in thestaminate flowers was more than twice that in the pistillateflowers. These insects may take part in the process of pollination.Copyright 2001 Annals of Botany Company Ecballium elaterium, Cucurbitaceae, monoecious plant, nectaries, structure, ultrastructure, nectar secretion, stomata, Hemiptera insects  相似文献   

15.
密花香薷花蜜腺的解剖学研究   总被引:6,自引:0,他引:6  
密花香薷花密腺分布于子房基部和子房表面,属于一朵花中具二种花蜜腺类型,子房基部的盘状蜜腺由分泌表皮、产蜜组织及维管束三部分组成,分泌表皮上角质层局部有小孔。子房蜜腺由分泌表皮和产蜜组织组成。  相似文献   

16.
牛至花蜜腺的发育解剖学研究   总被引:1,自引:0,他引:1  
牛至花蜜腺位于子房基部的花盘上,属于盘状蜜腺。蜜腺组织由分泌表皮和产蜜组织组成。分泌表皮液泡化明显,并分布有气孔器。在子房发育成熟后,由花盘表面细胞恢复分裂能力形成蜜腺原基。产蜜组织在发育过程中,液泡、淀粉粒都呈现出一定的消长规律,此种规律与蜜汁的合成和分泌有关。原蜜汁由蜜腺周围的韧皮部提供,经产蜜组织积聚合成,然后通过气孔器泌出。本文还对霜冻条件下蜜腺的结构和功能进行了初步分析。  相似文献   

17.
The structure of perigonal nectaries, nectar production and carbohydrate composition were compared at various stages in the lifespan of the flower of Fritillaria meleagris L. The six nectaries each occupied a groove that is located 2–4 mm above the tepal base. The average nectary measured 11.0 mm long and 1.0–1.2 mm wide. The structure of nectaries situated on both inner and outer tepal whorls was identical, and at anthesis they were equally accessible to potential pollinators. However, secretion from nectaries associated with inner tepals tended to exceed that produced by nectaries located on the outer tepals. On average, regardless of flower stage, one flower secreted 10.87 ± 12.98 mg of nectar (mean and SD; N = 182). The nectar concentration ranged between 3 and 75%, with average concentration of sugars exceeding 50%. Both nectar production and concentration were dependent on the stage of anthesis, with the highest scores being recorded during full anthesis (21.75 ± 16.08 mg; 70.5%, mass and concentration, respectively) and the lowest at the end of anthesis (1.32 ± 2.69 mg; 16.9%, mass and concentration, respectively). A decline in both mass of nectar secreted and nectar concentration during the final stage of anthesis indicates nectar resorption. Nectar was composed of sucrose, glucose and fructose in approx. equal quantities, and its composition did not change significantly during subsequent stages of flowering. The nectaries comprised a single-layered secretory epidermis and several layers of subepidermal parenchyma. The nectariferous cells did not accumulate starch during any of the investigated stages. The nectary was supplied with one large and several smaller vascular bundles comprising xylem and phloem. Transport of assimilates and nectar secretion by protoplasts of secretory cells (and probably also nectar resorption) were facilitated by cell wall ingrowths present on the tangential walls of epidermal cells and subepidermal parenchyma. Epidermal cells lacked stomata. Nectar passed across the cell wall and through the cuticle which was clearly perforated with pores.  相似文献   

18.
Surface features, anatomy, and ultrastructure of the floral nectary of Eccremocarpus scaber (Bignoniaceae), pollinated predominantly by the largest-known hummingbird (Patagona gigas gigas), were studied together with nectar sugar content and secretion rate. The annular disk nectary comprises epidermis, secretory and ground parenchyma with intercellular spaces, and branched vascular bundles terminating in the secretory parenchyma where only phloem is found. Amyloplasts and vacuoles increase in size throughout development, the latter becoming sites of organelle degradation. Transferlike cells in nectary phloem and P-proteinlike fibrillar material in phloem parenchyma were observed. Flowers produced around 32 μl of nectar (mostly after anthesis) with 11 mg of sugar composed of fructose, glucose, sucrose, and maltose in a ratio of 0.34:0.32:0.17:0.17. Morphological studies as well as the presence of maltose and glucose in nectar suggest storage of the originally phloem-derived sugars as starch with its subsequent hydrolysis. The low sucrose/hexose ratio (0.25) and high nectary secretion force (nectar per flower biomass) observed places E. scaber close to large-bodied bat-pollinated plants. A hypothesis based on nectar origin and nectar secretion is advanced to explain pollinator-correlated variation in sucrose/hexose ratio.  相似文献   

19.
Development and Ultrastructure of Cucurbita pepo Nectaries of Male Flowers   总被引:2,自引:0,他引:2  
The development of the nectary of the male flower ofCucurbitapepo L. was studied from 5d before to 2d after anthesis. Thenectary consists of parenchyma that stores starch in the presecretorystages, and epidermis. An hour before nectar secretion begins,the starch is hydrolyzed. The nectar exudes from the stomataand forms a continuous layer on the nectary surface. Duringanthesis the nectar may all be collected by pollinators or someor all of it may remain in the nectary and be successively resorbed.The nectary parenchyma stores material for synthesizing thesugar component of nectar and stores similar material againafter nectar resorption. It is also responsible for nectar productionand secretion. The epidermis is actively involved in the reabsorptionprocess. The resorption of nectar is a phenomenon that allowsthe plant to recover invested energy. Few observations on thisphenomenon have hitherto been published. Amyloplasts; Cucurbita pepo L.; courgette; nectaries; Nectar resorption; plastid; secretion; starch  相似文献   

20.
Anatomy and ultrastructure of the floral nectary of Peganum harmala L. were studied using light and transmission electron microscopy. The floral nectary was visible as a glabrous, regularly five‐lobed circular disc encircling the base of the ovary. Anatomically, it comprised a single layered epidermis and 15–20 layers of small, subepidermal secretory cells overlying several layers of large, ground parenchyma cells. The floral nectary was supplied by phloem and both sieve tubes and companion cells were found adjacent to the ground parenchyma. Based on our ultrastructural observations, plastids of secretory cells during the early stages of development were rich in starch grains and/or osmiophilic plastoglobuli, but these disappeared as nectar secretion progressed. The nectar appeared to exude through the modified stomata along symplastic and apoplastic routes. The abundant plastids and mitochondria suggest an eccrine mechanism of nectar secretion in P. harmala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号