首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Floral nectary development and nectar secretion in three species of Passiflora were investigated with light and electron microscopy. The nectary ring results from the activity of an intercalary meristem. Increased starch deposition in the amyloplasts of the secretory cells parallels maturation of the nectary phloem. Large membrane-bound protein bodies are observed consistently in phloem parenchyma cells, but their function is presently unknown. The stored starch serves as the main source of nectar sugars at anthesis. Plastid envelope integrity is maintained during starch degradation, and there is no evidence of participation of endoplasmic reticulum or Golgi in the secretion of pre-nectar. It is concluded that in these starchy nectaries granulocrine secretion, commonly reported for floral nectaries, does not occur.  相似文献   

2.
Anatomy and ultrastructure of the floral nectary of Peganum harmala L. were studied using light and transmission electron microscopy. The floral nectary was visible as a glabrous, regularly five‐lobed circular disc encircling the base of the ovary. Anatomically, it comprised a single layered epidermis and 15–20 layers of small, subepidermal secretory cells overlying several layers of large, ground parenchyma cells. The floral nectary was supplied by phloem and both sieve tubes and companion cells were found adjacent to the ground parenchyma. Based on our ultrastructural observations, plastids of secretory cells during the early stages of development were rich in starch grains and/or osmiophilic plastoglobuli, but these disappeared as nectar secretion progressed. The nectar appeared to exude through the modified stomata along symplastic and apoplastic routes. The abundant plastids and mitochondria suggest an eccrine mechanism of nectar secretion in P. harmala.  相似文献   

3.
Among several native species of the Brazilian cerrado, a shrub, Tontelea micrantha, is exploited by traditional communities for the valuable oil extracted from its seeds, which has anti‐inflammatory properties. There have been no studies on the anatomy of its flower, and so the aim of this study is to describe the anatomy and ultrastructure of its floral nectary. Flower buds and flowers in anthesis were collected, fixed and processed for light and electron microscopy. The discoid floral nectary is composed of epidermis and a secretory parenchyma. Secretory cells are rich in plastids with starch grains and mitochondria. The nectar, sucrose dominant, is just sufficient to form a thin film on the nectary. The secretory cells show starch and oil droplets; however, during nectar production there is no evidence of hydrolysis of starch and some lipid reserves remain unchanged. Our results suggest a reduction in the amount of oil in the secretory cells during the secretory phase but this does not appear to imply a release of oil as a nectar component. In addition to maintaining part of the reserves, the lower frequency of organelles involved in nectar synthesis reinforces the hypothesis that phloem sap is the origin of nectar sugars. The tiny nectar film, released through modified stomata, is attractive to small insects such as flies. Considering the importance and intensity of use of T. micrantha in the Brazilian cerrado, we think that these data about its floral nectary can help to better explain its reproductive biology with positive impacts on its management and conservation.  相似文献   

4.
Surface features, anatomy, and ultrastructure of the floral nectary of Eccremocarpus scaber (Bignoniaceae), pollinated predominantly by the largest-known hummingbird (Patagona gigas gigas), were studied together with nectar sugar content and secretion rate. The annular disk nectary comprises epidermis, secretory and ground parenchyma with intercellular spaces, and branched vascular bundles terminating in the secretory parenchyma where only phloem is found. Amyloplasts and vacuoles increase in size throughout development, the latter becoming sites of organelle degradation. Transferlike cells in nectary phloem and P-proteinlike fibrillar material in phloem parenchyma were observed. Flowers produced around 32 μl of nectar (mostly after anthesis) with 11 mg of sugar composed of fructose, glucose, sucrose, and maltose in a ratio of 0.34:0.32:0.17:0.17. Morphological studies as well as the presence of maltose and glucose in nectar suggest storage of the originally phloem-derived sugars as starch with its subsequent hydrolysis. The low sucrose/hexose ratio (0.25) and high nectary secretion force (nectar per flower biomass) observed places E. scaber close to large-bodied bat-pollinated plants. A hypothesis based on nectar origin and nectar secretion is advanced to explain pollinator-correlated variation in sucrose/hexose ratio.  相似文献   

5.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

6.
Nectaries occur widely in Convolvulaceae. These structures remain little studied despite their possible importance in plant–animal interactions. In this paper, we sought to describe the structure and ultrastructure of the receptacular nectaries (RNs) of Ipomoea cairica, together with the dynamics of nectar secretion. Samples of floral buds, flowers at anthesis and immature fruits were collected, fixed and processed using routine methods for light, scanning and transmission electron microscopy. Circadian starch dynamics were determined through starch measurements on nectary sections. The secretion samples were subjected to thin layer chromatography. RNs of I. cairica were cryptic, having patches of nectar‐secreting trichomes, subglandular parenchyma cells and thick‐walled cells delimiting the nectary aperture. The glandular trichomes were peltate type and had typical ultrastructural features related to nectar secretion. The nectar is composed of sucrose, fructose and glucose. Nectar secretion was observed in young floral buds and continued as the flower developed, lasting until the fruit matured. The starch content of the subglandular tissue showed circadian variation, increasing during the day and decreasing at night. The plastids were distinct in different portions of the nectary. The continuous day–night secretory pattern of the RNs of I. cairica is associated with pre‐nectar source circadian changes in which the starch acts as a buffer, ensuring uninterrupted nectar secretion. This circadian variation may be present in other extrafloral nectaries and be responsible for full daytime secretion. We conclude that sampling time is relevant in ultrastructural studies of dynamic extranuptial nectaries that undergo various changes throughout the day.  相似文献   

7.
油菜花蜜腺发育过程的超微结构变化与泌蜜机理的研究   总被引:4,自引:0,他引:4  
油菜花蜜腺由2枚侧蜜腺和2枝中蜜腺组成,其基本结构类似。在蜜腺发育过程中,产蜜组织细胞内的内质网、高尔基体、质体和线粒体以及液泡都发生有规律变化。泌蜜前,细胞器的数量增加。其中,质体内积累淀粉,此过程与蜜腺内初皮部的分化并和线粒体的增加相关。泌蜜时,内质网数量增多,并产生小泡.小泡向质膜移动。泌蜜后,细胞液泡化,细胞器数量减少,细胞萎缩。根据观察结果分析,其原蜜汁来源于韧皮部,转运至产蜜组织细胞的质体、内质网和高尔基体内加工成蜜汁,最后通过胞吐和渗透相结合的方式泌出。  相似文献   

8.
We studied the interrelation between nectary structure (13 parameters), nectar characteristics (yield, chemical composition), and flower size of 11 Labiatae species in a Mediterranean shrub community near Athens, Greece. We also explored whether the above attributes are affected by the Mediterranean summer drought constraints. Our findings show that among all nectary parameters studied, nectary size and stomatal opening are the most important in (positively) shaping nectar secretion, nectary size being the most meaningful. Nectary structure is correlated to quantity of the nectar secreted, not its quality. Wide flowers bear wide nectaries with large stomatal openings, whereas deep flowers are not related to any nectary size. Corolla size (both length and width) and nectary stomatal opening decrease with flowering time. This applies also to nectary size, nectar volume and sugar content of the perennials (9 species). All above cases of time dependence show that there is a constraint effect of Mediterranean climate on floral and nectary structure, reflected also as a decrease in nectar secretion. Nectary structure in Labiatae is largely shaped by both phylogenetic and climate constraints. On the other hand, although nectar is largely influenced by nectary structure, it is to a large extent ecologically biased, implying that, in addition to phylogeny, there are many other ecological parameters interfering in its secretion such as time within the season, life history, and light requirements.  相似文献   

9.
BACKGROUND AND AIMS: The floral nectary of Digitalis purpurea is a transitory organ with stomatal exudation of nectar. In this type of nectary, the nectar is thought to be transported to the exterior via intercellular ducts that traverse the nectariferous tissue. The latter is also traversed by a ramified system of phloem strands from which prenectar sugar is most probably unloaded. The aims of this study were to provide some of the basic information needed to evaluate the possible mechanism involved in nectar secretion and to discover the fate of the nectary. METHODS: The ultrastructure of the nectary was investigated at different stages of development by analysis of a series of ultrathin (7 x 10(-8) m) sections 7 x 10(-7) m apart from one another. Proportions of the cells typical of the nectary were documented by 3D-reconstruction and morphometry. KEY RESULTS: The phloem consisted of variably shaped sieve elements and companion cells which, as a rule, were more voluminous than the sieve elements. Direct contact between the phloem strands and intercellular ducts was observed. In contrast to the phloem, which remained structurally intact beyond the secretory phase, the nectariferous tissue exhibited degenerative changes reminiscent of programmed cell death (PCD), which started as early as the onset of secretion and progressed in a cascade-like fashion until final cell death occurred in the exhausted nectary. Hallmarks of PCD were: increased vacuolation; increase in electron opacity of individual cells; progressive incorporation of plasmatic components into the vacuole reminiscent of autophagy; degradation of plastids starting with hydrolysis of starch; deformation of the nucleus and gradual disappearance of chromatin; loss of tonoplast integrity and subsequent autolysis of the rest of cellular debris. Degeneration of the cells occurred against a background of increasing cell size. CONCLUSIONS: The cytological and anatomical evidence presented here, and calculations of the solute fluxes necessary for accumulation of starch and for the production of nectar support the view that: (a) in the foxgloves' nectary, apoplastic phloem unloading dominates, at least during exudation of nectar; (b) the obsolete nectary may be dismantled by PCD; and (c) at least the products of late nectary degradation are loaded via the apoplast into the unchanged phloem and exported to sinks elsewhere in the plant for reallocation.  相似文献   

10.
采用高压冷冻和低温替代技术对不同时期泌蜜前、泌蜜早期和泌蜜晚期的拟南齐(Arabidopsisthaliana L.)成熟花蜜腺的超微结构进行了研究。着重对小泡运输过程中是否与细胞质膜发生融合以及蜜腺组织中深色细胞与伴胞的区别等问题进行了讨论。拟南芥花中有一对较大的侧蜜腺以及2~4枚中蜜腺。中蜜腺位于2枚长雄蕊基部或它们之间,而侧蜜腺则位于两花瓣之间的短雄蕊附近。泌蜜前和泌蜜期,液泡的大小、高尔基体及内质网的数量、线粒体的分布以及质体内淀粉粒的大小都会发生一定的变化。当高尔基小泡从细胞内运输至细胞外时,并没有发生与细胞质膜融合的过程,与经典的“胞吐”假说不同。深色细胞在泌蜜期大量出现与筛分子旁的伴胞明显不同,前者与蜜腺顶端的气孔器相连,形成“通道”从而使蜜汁从蜜腺排出。  相似文献   

11.
Various secretory glands are observed on Asphodelus aestivus flower, a common geophyte of Mediterranean type ecosystem. The floral nectary has the form of individual slits between the gynecium carpels (septal nectary). The septal slits extend downwards to the ascidiate zone of the carpels. The nectar is secreted by the epidermal cells of the slits, which differentiate into epithelial cells. The latter contain numerous organelles, among which endoplasmic reticulum elements and golgi bodies predominate. Nectar secretion results in an expansion of the space between the septa. The nectar becomes discharged through small holes on the ovary wall. Six closely packed stamens surround the ovary and bear numerous papillae at their basis. These papillae are actually osmophores, i.e. secretory structures responsible for the manufacture, secretion and dispersion of terpenic scent. A mucilage gland (obturator) exists between the lateral ovule and the ovary septa, giving a positive reaction with Schiff’s reagent. This gland secretes a mucoproteinaceous product to nourish the pollen tube and to facilitate its penetration into the ovary.  相似文献   

12.
BACKGROUND AND AIMS: Considering that few studies on nectary anatomy and ultrastructure are available for chiropterophilous flowers and the importance of Hymenaea stigonocarpa in natural 'cerrado' communities, the present study sought to analyse the structure and cellular modifications that take place within its nectaries during the different stages of floral development, with special emphasis on plastid dynamics. METHODS: For the structural and ultrastructural studies the nectary was processed as per usual techniques and studied under light, scanning and transmission electron microscopy. Histochemical tests were employed to identify the main metabolites on nectary tissue and secretion samples. KEY RESULTS: The floral nectary consists of the inner epidermis of the hypanthium and vascularized parenchyma. Some evidence indicates that the nectar release occurs via the stomata. The high populations of mitochondria, and their juxtaposition with amyloplasts, seem to be related to energy needs for starch hydrolysis. Among the alterations observed during the secretory phase, the reduction in the plastid stromatic density and starch grain size are highlighted. When the secretory stage begins, the plastid envelope disappears and a new membrane is formed, enclosing this region and giving rise to new vacuoles. After the secretory stage, cellular structures named 'extrastomatic bodies' were observed and seem to be related to the nectar resorption. CONCLUSIONS: Starch hydrolysis contributes to nectar formation, in addition to the photosynthates derived directly from the phloem. In these nectaries, the secretion is an energy-requiring process. During the secretion stage, some plastids show starch grain hydrolysis and membrane rupture, and it was observed that the region previously occupied by this organelle continued to be reasonably well defined, and gave rise to new vacuoles. The extrastomatic bodies appear to be related to the resorption of uncollected nectar.  相似文献   

13.
Chwil M  Chwil S 《Protoplasma》2012,249(4):1059-1069
The Polemoniaceae family forms flowers diverse in the terms of pollination methods and nectar types. The micromorphology of the nectary surface and the tissue structures as well as the ultrastructure of the cells of the floral nectaries in Polemonium caeruleum L. were examined using light, scanning and transmission electron microscopy. A bowl-shaped nectary, detached from the ovary, grows at its base. Its contour shows folds with depressions in the places where the stamens grow, forming five-lobed disc (synapomorphic character). Nectar is secreted through modified anomocytic stomata, which are formed in the epidermis covering the tip and the lateral wall of the projection located between the staminal filaments. The undulate nectary consists of a single-layered epidermis and three to nine layers of parenchymal cells. The cells of the nectary contain a dense cytoplasm, numerous plastids with an osmophilic stroma and starch grains, well-developed endoplasmic reticulum, as well as a large number of mitochondria interacting with the Golgi bodies. The ultrastructure of nectary cells indicates the granulocrine secretion mechanism and diversified transport of nectar.  相似文献   

14.
In dichogamous plants, nectar characteristics (i.e. nectar amount and its composition) can differ between sexual phases. In the present study, we investigated the structural organization of the floral nectary, nectar production and carbohydrate composition in the protandrous Chamaenerion angustifolium (L.) Scop. (Onagraceae). The receptacular nectary consisted of an epidermis with numerous nectarostomata, several layers of photosynthetic secretory parenchyma, and subsecretory parenchyma. Nectariferous tissue was not directly vascularized and starch grains were rarely observed in the secretory cells, occurring exclusively in the guard cells of modified stomata. The nectar was released via nectarostomata. The floral nectar was hexose rich (32.8/39.1/28.1% glucose/fructose/sucrose) and the total concentration was constant throughout the anthesis (47% on average). However, contrasting patterns in nectar amount and carbohydrate composition between the floral sexual phases were observed. On average, female‐phased flowers produced 1.4‐fold more nectar than male‐phased flowers, and although the nectar was sucrose rich during the male phase, it was hexose rich during the female phase, suggesting sucrose hydrolysis.  相似文献   

15.
Floral nectar is thought to be one of the most important rewards that attract pollinators in Pedicularis;however,few studies have examined variation of nectary structure and/or nectar secretion in the genus,particularly among closely related species. Here we investigated nectary morphology,nectar quality,and nectar production dynamics in flowers of Pedicularis section Cyathophora. We found a conical floral nectary at the base of the ovary in species of the rex-thamnophila clade. Stomata were found on the surface of the nectary,and copious starch grains were detected in the nectary tissues. In contrast,a semi-annular nectary was found in flowers of the species of the superba clade. Only a few starch grains were observed in tissues of the semi-annular nectary,and the nectar sugar concentration in these flowers was much lower than that in the flowers of the rexthamnophila clade. Our results indicate that the floral nectary has experienced considerable morphological,structural,and functional differentiation among closely related species of Pedicularis. This could have affected nectar production,leading to a shift of the pollination mode. Our results also imply that variation of the nectary morphology and nectar production may have played an important role in the speciation of sect. Cyathophora.  相似文献   

16.
The structure of perigonal nectaries, nectar production and carbohydrate composition were compared at various stages in the lifespan of the flower of Fritillaria meleagris L. The six nectaries each occupied a groove that is located 2–4 mm above the tepal base. The average nectary measured 11.0 mm long and 1.0–1.2 mm wide. The structure of nectaries situated on both inner and outer tepal whorls was identical, and at anthesis they were equally accessible to potential pollinators. However, secretion from nectaries associated with inner tepals tended to exceed that produced by nectaries located on the outer tepals. On average, regardless of flower stage, one flower secreted 10.87 ± 12.98 mg of nectar (mean and SD; N = 182). The nectar concentration ranged between 3 and 75%, with average concentration of sugars exceeding 50%. Both nectar production and concentration were dependent on the stage of anthesis, with the highest scores being recorded during full anthesis (21.75 ± 16.08 mg; 70.5%, mass and concentration, respectively) and the lowest at the end of anthesis (1.32 ± 2.69 mg; 16.9%, mass and concentration, respectively). A decline in both mass of nectar secreted and nectar concentration during the final stage of anthesis indicates nectar resorption. Nectar was composed of sucrose, glucose and fructose in approx. equal quantities, and its composition did not change significantly during subsequent stages of flowering. The nectaries comprised a single-layered secretory epidermis and several layers of subepidermal parenchyma. The nectariferous cells did not accumulate starch during any of the investigated stages. The nectary was supplied with one large and several smaller vascular bundles comprising xylem and phloem. Transport of assimilates and nectar secretion by protoplasts of secretory cells (and probably also nectar resorption) were facilitated by cell wall ingrowths present on the tangential walls of epidermal cells and subepidermal parenchyma. Epidermal cells lacked stomata. Nectar passed across the cell wall and through the cuticle which was clearly perforated with pores.  相似文献   

17.
垂柳雌花蜜腺一枚,位于于房与花序轴之间,多呈扁平广卵形,由分泌表皮、泌蜜组织和维管束组成。雄花蜜腺呈基部相连的两枚突起,一枚位于花丝与花序轴之间,基部宽扁,上部棒状;另一枚位于花丝与苞片之间,棒状,仅由分泌表皮和泌蜜组织组成。雌、雄花蜜腺均起源于花托表面2—3层细胞。在蜜腺发育过程中,雌、雄花蜜腺泌蜜组织细胞的液泡发生规律性变化.雌花蜜腺为淀粉型蜜腺,而雄花蜜腺为非淀粉型蜜腺。雌、雄花蜜腺的原宜汁分别由蜜腺维管束韧应部或花丝维管束韧皮部提供,其蜜计最后均由分泌表皮细胞和变态气孔排出。  相似文献   

18.
High pressure freezing and freeze substitution techniques were used to study the floral nectary of Arabidopsis thaliana L. focused on its ultrastmcture of mature nectary at pre-secretory, early secretory and heavy secretory stages. Questions of whether or not the transported vesicles fuse with the plasma]emma, and whether or not the "densely-stained cells" were comparable to companion cells during the secretory process were especially emphasized. The flowers of A. thaliana contained a pair of rather large lateral nectaries and 2 to 4 median ones. The median nectaries were situated at the bases of the two long stamens or between them while each of the. lateral ones was situated nearby each short stamen and between two petals. Before and during the secretion changes in the size of vacuoles and starch grains in the chloroplasts, the number of dictyosomes and endoplasmic mticulum and the distribution of mitechondria occurred before and during the stage of secretion. It appears that transported vesicles from the dictyosomes were transferred directly from one nectarfferous cell to another or to the exterior. They did not fuse with the plasmalemma when they left the cells. A great number of special "densely-stained cells" were different from the companion cells nearby the sieve elements. It was suggested that a tunnel be formed by these "densely-stained cells" connecting the stomata at the top of nectary leading the out-flow of nectar.  相似文献   

19.
On the mechanisms of nectar secretion: revisited   总被引:1,自引:0,他引:1  

Background and Scope

Models of nectar formation and exudation in multilayered nectaries with modified stomata or permeable cuticle are evaluated. In the current symplasmic model the pre-nectar moves from terminal phloem through the symplasm into the apoplasm (cell walls and intercellular spaces) with nectar formation by either granulocrine or eccrine secretion and its diffusion outwards. It is concluded, however, that no secretory granules are actually produced by the endoplasmic reticulum, and that secretory Golgi vesicles are not involved in the transport of nectar sugar. Therefore, the concept of granulocrine secretion of nectar should be discarded. The specific function of the endomembrane system in nectary cells remains unknown. According to the apoplasmic model, the pre-nectar moves from the terminal phloem in the apoplasm and, on the way, is transformed from phloem sap into nectar. However, viewed ultrastructurally, the unloading (terminal) phloem of nectaries appears to be less active than that of the leaf minor veins, and is therefore not actively involved in the secretion of pre-nectar components into the apoplasm. This invalidates the apoplasmic model. Neither model provides an explanation for the origin of the driving force for nectar discharge.

Proposal

A new model is proposed in which nectar moves by a pressure-driven mass flow in the nectary apoplasm while pre-nectar sugars diffuse from the sieve tubes through the symplasm to the secretory cells, where nectar is formed and sugars cross the plasma membrane by active transport (‘eccrine secretion’). The pressure originates as the result of water influx in the apoplasm from the symplasm along the sugar concentration gradient. It follows from this model that there can be no combinations of apoplasmic and symplasmic pre-nectar movements. The mass-flow mechanism of nectar exudation appears to be universal and applicable to all nectaries irrespective of their type, morphology and anatomy, presence or absence of modified stomata, and their own vascular system.  相似文献   

20.
Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations – which resemble Casparian strips – in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post‐secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non‐secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号