首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully grown G2-arrested Xenopus oocytes resume meiosis in vitro upon exposure to hormonal stimulation. Progesterone triggers oocyte meiosis resumption through a Ras-independent pathway that involves a p39Mos-dependent activation of the mitogen-activated protein (MAP) kinases. Insulin also triggers meiosis resumption through a tyrosine kinase receptor that activates a Ras-dependent pathway leading to the MAP kinases activation. Antisense phosphorothioate oligonucleotides were used to prevent p39Mos accumulation and Erk-like Xp42(Mpk1) activation during insulin-induced Xenopus oocytes maturation. In contrast to previous works, prevention of p39Mos-induced activation of Xp42(Mpk1) in insulin-treated oocytes did not inhibit but delayed meiotic resumption, like in progesterone-stimulated oocytes. Activations of Xp42(Mpk1), the unique Erk of the oocyte, and of its downstream target p90Rsk, were impaired and phosphorylation of the MAPKK kinase Raf was partially inhibited. Similarly, oocytes treated with the MEK inhibitor U0126, stimulated by insulin exhibited delayed germinal vesicle breakdown, absence of Xp42(Mpk1) activation, and partial phosphorylation of Raf. To summarize, whereas p39Mos-induced activation of MEK/MAPK pathway is dispensable for insulin-induced germinal vesicle breakdown, Xp42(Mpk1) activation induced by insulin is dependent upon p39Mos synthesis. Raf complete phosphorylation appears to require the MEK/MAPK pathway activation both in progesterone and insulin-stimulated oocytes.  相似文献   

2.
Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17α,20β-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes. Received: 10 February 2000 / Accepted: 25 April 2000  相似文献   

3.
Fully grown immature oocytes acquire the ability to be fertilized with sperm after meiotic maturation, which is finally accomplished by the formation and activation of the maturation-promoting factor (MPF). MPF is the complex of Cdc2 and cyclin B, and its function in promoting metaphase is common among species. The Mos/mitogen-activated protein kinase (MAPK) pathway is also commonly activated during vertebrate oocyte maturation, but its function seems to be different among species. We investigated the function of the Mos/MAPK pathway during oocyte maturation of the frog Rana japonica. Although MAPK was activated in accordance with MPF activation during oocyte maturation, MPF activation and germinal vesicle breakdown (GVBD) was not initiated when the Mos/MAPK pathway was activated in immature oocytes by the injection of c-mos mRNA. Inhibition of Mos synthesis by c-mos antisense RNA and inactivation of MAPK by CL100 phosphatase did not prevent progesterone-induced MPF activation and GVBD. However, continuous MAPK activation and MAPK inhibition through oocyte maturation accelerated and delayed MPF activation, respectively. Furthermore, Mos induced a low level of cyclin B protein synthesis in immature oocytes without the aid of MAPK. These results suggest that the general function of the Mos/MAPK pathway, which is not essential for MPF activation and GVBD in Rana oocytes, is to enhance cyclin B translation by Mos itself and to stabilize cyclin B protein by MAPK during oocyte maturation.  相似文献   

4.
The resumption of meiosis in Xenopus arrested oocytes is triggered by progesterone, which leads to polyadenylation and translation of Mos mRNA, then activation of MAPK pathway. While Mos protein kinase has been reported to be essential for re-entry into meiosis in Xenopus, arrested oocytes can undergo germinal vesicle breakdown (GVBD) independently of MAPK activation, leading us to question what the Mos target might be if Mos is still required. We now demonstrate that Mos is indeed necessary, although is independent of the MAPK cascade, for conversion of inactive pre-MPF into active MPF. We have found that Myt1 is likely to be the Mos target in this process, as Mos interacts with Myt1 in oocyte extracts and Mos triggers Myt1 phosphorylation on some sites in vivo, even in the absence of MAPK activation. We propose that Mos is involved, not only in the MAPK cascade pathway, but also in a mechanism that directly activates MPF in Xenopus oocytes.  相似文献   

5.
In Xenopus oocytes, induction of the G2/M transition by progesterone is a complex process that is promoted by a network of signaling molecules whose cumulative effect results in the activation of maturation promoting factor (MPF) and germinal vesicle breakdown (GVBD). We examined the role of Mos, Mek, PI-3 kinase and c-Jun N-terminal kinase (JNK) in progesterone stimulation of GVBD. Expression of an activated form of JNK neither induced nor enhanced progesterone-mediated GVBD in oocytes, suggesting a limited role in cell-cycle progression. We blocked Mek, Mos and PI-3 kinase activities by a variety of means that included expression of dominant-negative kinase suppressor of Ras (DnKSR), expression of a dominant-negative PI-3 kinase (DnPI3K), treatment of oocytes with a Mek inhibitor (U1026) or PI-3 kinase (LY294002) inhibitor, and introduction of Mos antisense morpholinos. Inhibition of any one pathway alone failed to block GVBD induced by either high or low concentrations of progesterone. In contrast, inhibiting Mos or Mek function in addition to abrogating PI-3 kinase activity effectively blocked oocyte maturation. Furthermore, by expressing suboptimal amounts of Mos in conjunction with an activated form of Mek and an activated form of the p110 catalytic subunit of PI-3 kinase, we show cooperation among these signaling molecules toward the induction of GVBD. Moreover, expression of optimal amounts of these three proteins in conjunction with inhibitors of Mos, Mek or PI-3 kinase demonstrated that activated Mek-induced GVBD is independent of Mos or PI-3 kinase activity. In addition, Mos-induced GVBD is dependent upon Mek activity, but does not require PI-3 kinase activity. Finally, Mos appears to be a major contributor to GVBD induced by activated PI-3 kinase, while Mek is a minor contributor to this process.  相似文献   

6.
Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes   总被引:2,自引:0,他引:2  
Xenopus oocytes are arrested in meiotic prophase I and resume meiotic divisions in response to progesterone. Progesterone triggers activation of M-phase promoting factor (MPF) or Cdc2-cyclin B complex and neosynthesis of Mos kinase, responsible for MAPK activation. Both Cdc2 and MAPK activities are required for the success of meiotic maturation. However, the signaling pathway induced by progesterone and leading to MPF activation is poorly understood, and most of the targets of both Cdc2 and MAPK in the oocyte remain to be determined. Aurora-A is a Ser/Thr kinase involved in separation of centrosomes and in spindle assembly during mitosis. It has been proposed that in Xenopus oocytes Aurora-A could be an early component of the progesterone-transduction pathway, acting through the regulation of Mos synthesis upstream Cdc2 activation. We addressed here the question of Aurora-A regulation during meiotic maturation by using new in vitro and in vivo experimental approaches. We demonstrate that Cdc2 kinase activity is necessary and sufficient to trigger both Aurora-A phosphorylation and kinase activation in Xenopus oocyte. In contrast, these events are independent of the Mos/MAPK pathway. Aurora-A is phosphorylated in vivo at least on three residues that regulate differentially its kinase activity. Therefore, Aurora-A is under the control of Cdc2 in the Xenopus oocyte and could be involved in meiotic spindle establishment.  相似文献   

7.
In Xenopus oocytes, initiation of maturation is dependent on reduction of cyclic AMP-dependent protein kinase (PKA) activity and the synthesis of the mos proto-oncogene product. Mos is required during meiosis I for the activation of both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Here we show that injection of the catalytic subunit of PKA (PKAc) prevented progesterone-induced synthesis of endogenous Mos as well as downstream MPF and MAPK activation. However, PKAc did not prevent injected soluble Mos product from activating MAPK. While MAPK is activated during Mos-PKAc coinjection, attendant MPF activation is blocked. Additionally, PKAc caused a potent block in the electrophoretic mobility shift of cdc25 that is associated with phosphatase activation. This inhibition of cdc25 activity was not reversed by progesterone, Mos, or MPF. We conclude that PKAc acts as a negative regulator at several points in meiotic maturation by preventing both Mos translation and MPF activation.  相似文献   

8.
The function of mitogen-activated protein kinase (MAPK) during porcine oocyte maturation was examined by injecting oocytes with either mRNA or antisense RNA of porcine c-mos protein, an upstream kinase of MAPK. The RNAs were injected into the cytoplasm of porcine immature oocytes immediately after collection from ovaries, then the oocytes were cultured for maturation up to 48 h. The phosphorylation and activation of MAPK were observed at 6 h after injection of the c-mos mRNA injected-oocytes, whereas in control oocytes, MAPK activation was detected at 24 h of culture. The germinal vesicle breakdown (GVBD) rate at 24 h of culture was significantly higher in c-mos mRNA-injected oocytes than in control oocytes. In contrast, although injection of c-mos antisense RNA completely inhibited phosphorylation and activation of MAPK throughout the maturation period, the GVBD rate and its time course were the same in noninjected oocytes. The degree of maturation-promoting factor (MPF) activation was, however, very low in oocytes in the absence of MAPK activation. Most of those oocytes had both abnormal morphology and decondensed chromosomes at 48 h of culture. These results suggest that MAPK activation is not required for GVBD induction in porcine oocytes and that the major roles of MAPK during porcine oocyte maturation are to promote GVBD by increasing MPF activity and to arrest oocytes at the second metaphase.  相似文献   

9.
tpr-met, a tyrosine kinase oncogene, is the activated form of the met proto-oncogene that encodes the receptor for hepatocyte growth factor/scatter factor. The tpr-met product (p65tpr-met) was tested for its ability to induce meiotic maturation in Xenopus oocytes. While src and abl tyrosine kinase oncogene products have previously been shown to be inactive in this assay, p65tpr-met efficiently induced maturation-promoting factor (MPF) activation and germinal vesicle breakdown (GVBD) together with the associated increase in ribosomal S6 subunit phosphorylation. tpr-met-mediated MPF activation and GVBD was dependent on the endogenous c-mosxe, while the increase in S6 protein phosphorylation was not significantly affected by the loss of mos function. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine inhibits tpr-met-mediated GVBD at concentrations that prevent insulin- but not progesterone-induced oocyte maturation. Moreover, maturation triggered by tpr-met is also inhibited by cyclic AMP-dependent protein kinase. This is the first demonstration that a tyrosine kinase oncogene product, p65tpr-met, can induce meiotic maturation in Xenopus oocytes and activate MPF through a mos-dependent pathway, possibly the insulin or insulinlike growth factor 1 pathway.  相似文献   

10.
In somatic cells, the Raf-1 serine/threonine protein kinase is activated by several polypeptide growth factors. We investigated the role of Raf-1 in progesterone-induced meiotic maturation of Xenopus laevis oocytes. Raf-1 enzymatic activity and phosphorylation (reflected by a mobility shift on sodium dodecyl sulfate gels) were increased in oocytes following progesterone stimulation. The increase in Raf-1 activity was concurrent with an elevation in the activity of mitogen-activated protein (MAP) kinase. When RNA encoding an oncogenic form of Raf-1 (v-Raf) was injected into immature oocytes, MAP kinase mobility shift, germinal vesicle breakdown, and histone H1 phosphorylation increased markedly. When RNA encoding a dominant-negative version of Raf-1 was injected, progesterone-induced oocyte maturation was blocked. When RNA encoding Xenopus mos (mosxe) was injected into oocytes, Raf-1 and MAP kinase mobility shifts were observed after several hours. Also, when antisense mosxe oligonucleotides were injected into oocytes, progesterone-induced Raf-1 and MAP kinase mobility shifts were blocked. Finally, when antisense mosxe oligonucleotides were coinjected with v-Raf RNA into oocytes, histone H1 kinase activation, germinal vesicle breakdown, and MAP kinase mobility shift occurred. These findings suggest that Raf-1 activity is required for progesterone-induced oocyte maturation and that Raf-1 is downstream of mosxe activity.  相似文献   

11.
Instead of blocking oocyte maturation as it does in most animals, cAMP causes oocytes of marine nemertean worms to initiate maturation (=germinal vesicle breakdown, "GVBD"). To characterize cAMP-induced GVBD in nemerteans, inhibitors of tyrosine kinase signaling were tested on Cerebratulus sp. oocytes that had been incubated in cAMP-elevating drugs versus seawater (SW) alone. Such tests yielded similar results for Src-like tyrosine kinase blockers, as the inhibitors prevented mitogen-activated protein kinase (MAPK) activation without stopping either GVBD or maturation-promoting factor (MPF) activation in both SW and cAMP-elevating treatments. Alternatively, genistein, a general tyrosine kinase antagonist, and piceatannol, an inhibitor of the tyrosine kinase Syk, reduced GVBD and MAPK/MPF activities in SW-, but not cAMP-induced maturation. Similarly, inhibitors of the human epidermal growth factor receptor-2 (HER-2) tyrosine kinase prevented GVBD and MAPK/MPF activations in oocytes treated with SW, but not with cAMP-elevating drugs. Antagonists of either protein tyrosine phosphatases (PTPs) or the dual-specificity phosphatase Cdc25 also reduced GVBD and MAPK/MPF activities in SW-treated oocytes without generally affecting cAMP-induced maturation. Collectively, these data suggest cAMP triggers GVBD via pathways that do not require MAPK activation or several components of tyrosine kinase signaling. In addition, such differences in tyrosine kinase cascades, coupled with the dissimilar patterns of Ser/Thr kinase signaling described in the accompanying study, indicate that nemertean oocytes are capable of utilizing multiple mechanisms to activate MPF during GVBD.  相似文献   

12.
Progesterone-induced meiotic maturation of Xenopus oocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34(cdc2) could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34(cdc2), and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor-induced feedback. We report here that the cdk inhibitor p21(cip1), when microinjected into immature Xenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21(cip1), progesterone fails to induce the activation of MAPK or p34(cdc2), and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.  相似文献   

13.
Unlike in most animals, oocytes of marine nemertean worms initiate maturation (=germinal vesicle breakdown, GVBD) following an increase, rather than a decrease, in intraoocytic cAMP. To analyze how serine/threonine (Ser/Thr) kinase cascades involving mitogen-activated protein kinase (MAPK), maturation-promoting factor (MPF), cAMP-dependent protein kinase (PKA), and phosphatidylinositol 3-kinase (PI3K) regulate nemertean GVBD, oocytes of Cerebratulus sp. were treated with pharmacological modulators and stimulated with cAMP-elevating drugs or seawater (SW) alone. Both cAMP elevators and SW triggered GVBD while activating MAPK, its target p90Rsk, and MPF. Similarly, neither cAMP- nor SW-induced GVBD was affected by several Ser/Thr phosphatase inhibitors, and both stimuli apparently accelerated GVBD via a MAPK-independent, PI3K-dependent mechanism. However, inhibitors of Raf-1, a kinase that activates MAPK kinase, blocked GVBD and MAPK activation during SW-, but not cAMP-induced maturation. In addition, MPF blockers more effectively reduced GVBD and MAPK activity in SW versus in cAMP-elevating treatments. Moreover, the two maturation-inducing stimuli yielded disparate patterns of PKA-related MAPK activations and phosphorylations of putative PKA substrates. Collectively, such findings suggest that in maturing oocytes of Cerebratulus sp., Ser/Thr kinase cascades differ during cAMP- versus SW-induced GVBD in several ways, including MAPK activation modes, MPF-feedback loops, and PKA-related signaling pathways. Additional differences in cAMP- versus SW-induced oocyte maturation are also described in the accompanying study that deals with the roles of tyrosine kinase signaling during GVBD.  相似文献   

14.
Resumption of meiosis from diplotene arrest during the first meiotic prophase in vertebrate oocytes is universally controlled by MPF, a heterodimer of Cdk1 and cyclin B. Activation of MPF depends on the withdrawal of Cdk1 inhibition by Wee1/Myt1 kinase on the one hand and the activation of Cdk1 by Cdc25 phosphatase on the other. It is relevant to know whether both these pathways are necessary to rescue diplotene arrest or if either one of them is sufficient. In MIH (17alpha, 20beta dihydroxy-4-pregnen-3-one) incubated perch (Anabas testudineus) oocytes we have examined these possibilities. Perch oocyte extract following MIH incubation showed a significant increase in Myt1 phosphorylation from 12 to 16 hr indicating its progressive deactivation. MIH induced Mos expression markedly increased at 16 hr effecting 95% GVBD. Cycloheximide inhibited MIH induced Mos expression and its phosphorylation, which in turn reduced Myt1 phosphorylation and GVBD. Myt1 phosphorylation was blocked in Mos immunodepleted oocytes. All these suggest the involvement of Mos in Myt1 phosphorylation. Oocytes incubated in MIH for 16 hr activated Cdc25, but such activation could not rescue the inhibition of GVBD due to Myt1 in Mos immunodepleted oocytes. Blocking Cdc25 with an antisense oligo significantly inhibited GVBD even though Myt1 remained deactivated during this period. Taken together, our findings indicate that MIH requires both pathways for perch oocyte maturation: the expression and activation of Mos, which is linked to Myt1 deactivation on the one hand, and the activation of Cdc25 on the other, as blocking either pathway compromised G2-M transition in perch oocytes.  相似文献   

15.
Maturing amphibian oocytes undergo drastic morphological changes, including germinal vesicle breakdown (GVBD), chromosome condensation, and spindle formation in response to progesterone. Two kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), are involved in these changes, but their precise roles are unknown. Unlike in Xenopus oocytes, discrimination of the functions of MAPK and MPF in Rana oocytes is easy owing to the lack of pre-MPF. We investigated the roles of these kinases by careful observations of chromosomes and microtubules in Rana oocytes. MPF and MAPK activities were manipulated by treatment with progesterone, c-mos mRNA, or cyclin B mRNA in combination with MAPK kinase inhibitors. Activation of one kinase without activation of the other induced only limited events; GVBD was induced by MPF without MAPK, and reorganization of microtubules at GVBD was induced by MAPK without MPF, but other events were not induced. In contrast, coactivation of MPF and MAPK by injection of c-mos and cyclin B mRNA promoted almost all of the morphological changes that occur during maturation without progesterone, indicating that these are controlled by cooperation of MPF and MAPK. The results revealed the functions of MAPK and MPF in each process of sequential morphological changes during oocyte maturation.  相似文献   

16.
Mos is a germ cell-specific serine/threonine kinase and is required for Xenopus oocyte maturation. Active Mos stimulates a mitogen-activated protein kinase (MAPK) by directly phosphorylating and activating MAPK kinase (MKK). We report here that the Xenopus homolog of the beta subunit of casein kinase II (CKII beta) binds to and regulates Mos. The Mos-interacting region of CKII beta was mapped to the C terminus. Mos bound to CKII beta in somatic cells ectopically expressing Mos and CKII beta as well as in unfertilized Xenopus eggs. CKII beta inhibited Mos-mediated MAPK activation in rabbit reticulocyte lysates and repressed MKK activation by v-Mos in a coupled kinase assay. In addition, microinjection of CKII beta mRNA into Xenopus oocytes inhibited progesterone-induced meiotic maturation and MAPK activation, presumably by binding of CKII beta to Mos and thereby inhibiting MAPK activation. Moreover, this inhibitory phenotype could be rescued by another protein that binds to CKII beta, CKII alpha. The ability of ectopic CKII beta to inhibit meiotic maturation and the detection of a complex between endogenous Mos and CKII beta suggest that CKII beta may act as an inhibitor of Mos during oocyte maturation, perhaps setting a threshold beyond which Mos protein must accumulate before it can activate the MAPK pathway.  相似文献   

17.
Regulation of Src kinase activity during Xenopus oocyte maturation   总被引:2,自引:0,他引:2  
Expression of constitutively active Src protein tyrosine kinase in Xenopus oocytes has been shown to accelerate oocyte maturation suggesting that Src may be involved in meiotic progression. However, meiotic regulation of endogenous Src kinase in oocytes has not been investigated in detail. To address this problem, we measured the activity, expression level, and phosphorylation state of the endogenous Xenopus Src (xSrc) and overexpressed xSrc mutants in the process of progesterone-induced oocyte maturation. We found that the enzyme is first transiently activated in the plasma membrane-containing fraction of oocytes within 3 min of progesterone administration. This event represents one of the earliest responses of oocytes to the hormone and should be related to triggering some early signaling pathways of maturation. Thereafter, xSrc activity increases again at the time of germinal vesicle breakdown (GVBD) and remains elevated till the completion of maturation. This elevation of xSrc activity is associated with a 2-fold increase of xSrc protein content in the absence of change in its specific activity and xSrc mRNA content. No significant changes in the phosphorylation state of C-terminal regulatory phosphotyrosine can be registered either in endogenous xSrc or in overexpressed kinase-negative and wild-type xSrc proteins during maturation. Altogether, these results indicate that upregulation of xSrc in the meiotic metaphase occurs at the translation level. We also demonstrate here that the expression of constitutively active xSrc in Xenopus oocytes is accompanied by the activation of mitogen-activated protein kinase (MAPK). Our data suggest that the Src kinase acts through the MAPK pathway to accelerate oocyte maturation.  相似文献   

18.
Speedy: a novel cell cycle regulator of the G2/M transition   总被引:1,自引:0,他引:1       下载免费PDF全文
Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.  相似文献   

19.
H Kosako  Y Gotoh    E Nishida 《The EMBO journal》1994,13(9):2131-2138
MAP kinase kinase (MAPKK) has been identified as a protein factor that can induce phosphorylation and activation of inactive MAP kinase in vitro. In this study, we produced an anti-Xenopus MAPKK antibody that can specifically inhibit Xenopus MAPKK activity in vitro. Microinjection of this antibody into immature oocytes prevented progesterone-induced MAP kinase activation. Moreover, progesterone-induced histone H1 kinase activation and germinal vesicle breakdown (GVBD) were inhibited in the oocytes injected previously with this antibody. Furthermore, when a bacterially expressed Mos was introduced into immature oocytes, Mos-induced MAP kinase activation and GVBD were blocked in the oocytes injected with the anti-MAPKK antibody. These results show that MAPKK is responsible for the activation of MAP kinase in vivo and that the MAPKK/MAP kinase cascade plays a pivotal role in the MPF activation during the oocyte maturation process.  相似文献   

20.
The objectives of the present paper were to study the involvement and possible interactions of both cAMP-PKA and protein phosphatases in Bufo arenarum oocyte maturation and to determine if these pathways are independent or not of the MAP kinase (MAPK) cascade. Our results indicated that the inhibition of PKA by treatment with H-89, an inhibitor of the catalytic subunit of PKA, was capable of inducing GVBD in a dose-dependent manner by a pathway in which Cdc25 phosphatase but not the MAPK cascade is involved. The injection of 50 nl of H-89 10 μM produced GVBD percentages similar to those obtained with treatment with progesterone. In addition, the assays with okadaic acid (OA), a PP2A inhibitor, significantly enhanced the percentage of oocytes that resumed meiosis by a signal transducing pathway in which the activation of the MEK-MAPK pathway is necessary, but in which Cdc25 phosphatase was not involved. Treatment with H-89, was able to overcome the inhibitory effect of PKA on GVBD; however, the inhibition of Cdc25 activity with NaVO3 was able to overcome the induction of GVBD by H-89. Although the connections between PKA and other signalling molecules that regulate oocytes maturation are still unclear, our results suggest that phosphatase Cdc25 may be the direct substrate of PKA. In Xenopus oocytes it was proposed that PP2A, a major Ser/Thr phosphatase present, is a negative regulator of Cdc2 activation. However, in Bufo arenarum oocytes, inhibition of Cdc25 with NaVO? did not inhibit OA-induced maturation, suggesting that the target of PP2A was not the Cdc25 phosphatase. MAPK activation has been reported to be essential in Xenopus oocytes GVBD. In B. arenarum oocytes we demonstrated that the inhibition of MAPK by PD 98059 prevented the activation of MPF induced by OA, suggesting that the activation of the MAPK cascade produced an inhibition of Myt1 and, in consequence, the activation of MPF without participation of the Cdc25 phosphatase. Our results suggest that in incompetent oocytes of B. arenarum two signal transduction pathways may be involved in the control of MPF activation: (1) the inhibition of phosphatase 2A that through the MEK-MAPK pathway regulates the activity of the Myt1; and (2) the inhibition of AMPc-PKA, which affects the activity of the Cdc25 phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号